Resumen:
|
En la actualidad, la Internet de las Cosas (Internet of Things, IoT) es una tecnología esencial para la próxima generación de sistemas inalámbricos. La conectividad es la base de IoT, y el tipo de acceso requerido dependerá ...[+]
En la actualidad, la Internet de las Cosas (Internet of Things, IoT) es una tecnología esencial para la próxima generación de sistemas inalámbricos. La conectividad es la base de IoT, y el tipo de acceso requerido dependerá de la naturaleza de la aplicación. Uno de los principales facilitadores del entorno IoT es la comunicación machine-to-machine (M2M) y, en particular, su enorme potencial para ofrecer conectividad ubicua entre dispositivos inteligentes. Las redes celulares son la elección natural para las aplicaciones emergentes de IoT y M2M. Un desafío importante en las redes celulares es conseguir que la red sea capaz de manejar escenarios de acceso masivo en los que numerosos dispositivos utilizan comunicaciones M2M. Por otro lado, los sistemas celulares han experimentado un tremendo desarrollo en las últimas décadas: incorporan tecnología sofisticada y nuevos algoritmos para ofrecer una amplia gama de servicios. El modelado y análisis del rendimiento de estas redes multiservicio es también una tarea desafiante que podría requerir un gran esfuerzo computacional.
Para abordar los desafíos anteriores, nos centramos en primer lugar en el diseño y la evaluación de las prestaciones de nuevos mecanismos de control de acceso para hacer frente a las comunicaciones masivas M2M en redes celulares. Posteriormente nos ocupamos de la evaluación de prestaciones de redes multiservicio y proponemos una nueva técnica analítica que ofrece precisión y eficiencia computacional.
Nuestro principal objetivo es proporcionar soluciones para aliviar la congestión en la red de acceso radio cuando un gran número de dispositivos M2M intentan conectarse a la red. Consideramos los siguientes tipos de escenarios: (i) los dispositivos M2M se conectan directamente a las estaciones base celulares, y (ii) forman grupos y los datos se envían a concentradores de tráfico (gateways) que les proporcionan acceso a la infraestructura. En el primer escenario, dado que el número de dispositivos añadidos a la red aumenta continuamente, esta debería ser capaz de manejar el considerable incremento en las solicitudes de acceso. El 3rd Generation Partnership Project (3GPP) ha propuesto el access class barring (ACB) como una solución práctica para el control de congestión en la red de acceso radio y la red troncal. El ajuste correcto de los parámetros de ACB de acuerdo con la intensidad del tráfico es crítico, pero cómo hacerlo de forma dinámica y autónoma es un problema complejo cuya solución no está recogida en las especificaciones del 3GPP. Esta tesis doctoral contribuye al análisis del rendimiento y al diseño de nuevos algoritmos que implementen efectivamente este mecanismo, y así superar los desafíos introducidos por las comunicaciones masivas M2M. En el segundo escenario, dado que la heterogeneidad de los dispositivos IoT y las arquitecturas celulares basadas en hardware imponen desafíos aún mayores para permitir una comunicación flexible y eficiente en los sistemas inalámbricos 5G, esta tesis doctoral también contribuye al diseño de software-defined gateways (SD-GWs) en una nueva arquitectura propuesta para redes inalámbricas definidas por software que se denomina SoftAir. Esto permite manejar tanto un gran número de dispositivos como el volumen de datos que estarán vertiendo en la red.
Otra contribución de esta tesis doctoral es la propuesta de una técnica novedosa para el análisis de prestaciones de redes multiservicio de alta capacidad que se basa en un nuevo enfoque del modelizado analítico de sistemas que operan a diferentes escalas temporales. Este enfoque utiliza el análisis del transitorio de una serie de subcadenas absorbentes y lo denominamos absorbing Markov chain approximation (AMCA). Nuestros resultados muestran que para un coste computacional dado, AMCA calcula los parámetros de prestaciones habituales de un sistema con mayor precisión, en comparación con los resultados obtenidos por otr
[-]
Nowadays, Internet of Things (IoT) is an essential technology for the upcoming generation of wireless systems. Connectivity is the foundation for IoT, and the type of access required will depend on the nature of the ...[+]
Nowadays, Internet of Things (IoT) is an essential technology for the upcoming generation of wireless systems. Connectivity is the foundation for IoT, and the type of access required will depend on the nature of the application.
One of the leading facilitators of the IoT environment is machine-to-machine (M2M) communication, and particularly, its tremendous potential to offer ubiquitous connectivity among intelligent devices. Cellular networks are the natural choice for emerging IoT and M2M applications. A major challenge in cellular networks is to make the network capable of handling massive access scenarios in which myriad devices deploy M2M communications. On the other hand, cellular systems have seen a tremendous development in recent decades; they incorporate sophisticated technology and algorithms to offer a broad range of services. The modeling and performance analysis of these large multi-service networks is also a challenging task that might require high computational effort.
To address the above challenges, we first concentrate on the design and performance evaluation of novel access control schemes to deal with massive M2M communications. Then, we focus on the performance evaluation of large multi-service networks and propose a novel analytical technique that features accuracy and computational efficiency.
Our main objective is to provide solutions to ease the congestion in the radio access or core network when massive M2M devices try to connect to the network. We consider the following two types of scenarios: (i) massive M2M devices connect directly to cellular base stations, and (ii) they form clusters and the data is forwarded to gateways that provide them with access to the infrastructure. In the first scenario, as the number of devices added to the network is constantly increasing, the network should handle the considerable increment in access requests. Access class barring (ACB) is proposed by the 3rd Generation Partnership Project (3GPP) as a practical congestion control solution in the radio access and core network. The proper tuning of the ACB parameters according to the traffic intensity is critical, but how to do so dynamically and autonomously is a challenging task that has not been specified. Thus, this dissertation contributes to the performance analysis and optimal design of novel algorithms to implement effectively this barring scheme and overcome the challenges introduced by massive M2M communications. In the second scenario, since the heterogeneity of IoT devices and the hardware-based cellular architectures impose even greater challenges to enable flexible and efficient communication in 5G wireless systems, this dissertation also contributes to the design of software-defined gateways (SD-GWs) in a new architecture proposed for wireless software-defined networks called SoftAir. The deployment of these SD-GWs represents an alternative solution aiming at handling both a vast number of devices and the volume of data they will be pouring into the network.
Another contribution of this dissertation is to propose a novel technique for the performance analysis of large multi-service networks. The underlying complexity of the network, particularly concerning its size and the ample range of configuration options, makes the solution of the analytical models computationally costly. However, a typical characteristic of these networks is that they support multiple types of traffic flows operating at different time-scales. This time-scale separation can be exploited to reduce considerably the computational cost associated to determine the key performance indicators.
Thus, we propose a novel analytical modeling approach based on the transient regime analysis, that we name absorbing Markov chain approximation (AMCA). For a given computational cost, AMCA finds common performance indicators with greater accuracy, when compared to the results obtained by other approximate methods proposed in the literature.
[-]
En l'actualitat, la Internet de les Coses (Internet of Things, IoT) és una tecnologia essencial per a la propera generació de sistemes sense fil. La connectivitat és la base d'IoT, i el tipus d'accés requerit dependrà de ...[+]
En l'actualitat, la Internet de les Coses (Internet of Things, IoT) és una tecnologia essencial per a la propera generació de sistemes sense fil. La connectivitat és la base d'IoT, i el tipus d'accés requerit dependrà de la naturalesa de l'aplicació. Un dels principals facilitadors de l'entorn IoT és la comunicació machine-to-machine (M2M) i, en particular, el seu enorme potencial per oferir connectivitat ubiqua entre dispositius intel · ligents. Les xarxes mòbils són l'elecció natural per a les aplicacions emergents de IoT i M2M. Un desafiament important en les xarxes mòbils que actualment está rebent molta atenció és aconseguir que la xarxa siga capaç de gestionar escenaris d'accés massiu en què una gran quantitat de dispositius utilitzen comunicacions M2M. D'altra banda, els sistemes mòbils han experimentat un gran desenvolupament en les últimes dècades: incorporen tecnologia sofisticada i nous algoritmes per oferir una àmplia gamma de serveis. El modelatge i análisi del rendiment d'aquestes xarxes multiservei és també un desafiament important que podria requerir un gran esforç computacional.
Per abordar els desafiaments anteriors, en aquesta tesi doctoral ens centrem en primer lloc en el disseny i l'avaluació de les prestacions de nous mecanismes de control d'accés per fer front a les comunicacions massives M2M en xarxes cel · lulars. Posteriorment ens ocupem de l'avaluació de prestacions de xarxes multiservei i proposem una nova tècnica analítica que ofereix precisió i eficiència computacional.
El nostre principal objectiu és proporcionar solucions per a alleujar la congestió a la xarxa d'accés ràdio quan un gran nombre de dispositius M2M intenten connectar-se a la xarxa. Considerem els dos tipus d'escenaris següents:
(i) els dispositius M2M es connecten directament a les estacions base cel · lulars, i (ii) formen grups i les dades s'envien a concentradors de trànsit (gateways) que els proporcionen accés a la infraestructura. En el primer escenari, atès que el nombre de dispositius afegits a la xarxa augmenta contínuament, aquesta hauria de ser capaç de gestionar el considerable increment en les sol · licituds d'accés. El 3rd Generation Partnership Project (3GPP) ha proposat l'access class barring (ACB) com una solució pràctica per al control de congestió a la xarxa d'accès ràdio i la xarxa troncal. L'ajust correcte dels paràmetres d'ACB d'acord amb la intensitat del trànsit és crític, però com fer-ho de forma dinàmica i autònoma és un problema complex, la solució del qual no està recollida en les especificacions del 3GPP. Aquesta tesi doctoral contribueix a l'anàlisi del rendiment i al disseny de nous algoritmes que implementen efectivament aquest mecanisme, i així superar els desafiaments introduïts per les comunicacions massives M2M en les xarxes mòbils actuals i futures. En el segon escenari, atès que l'heterogeneïtat dels dispositius IoT i les arquitectures cel · lulars basades en hardware imposen desafiaments encara més grans per permetre una comunicació flexible i eficient en els sistemes sense fil 5G, aquesta tesi doctoral també contribueix al disseny de software-defined gateways (SD-GWS) en una nova arquitectura proposada per a xarxes sense fils definides per programari que s'anomena SoftAir. Això permet gestionar tant un gran nombre de dispositius com el volum de dades que estaran abocant a la xarxa.
Una altra contribució d'aquesta tesi doctoral és la proposta d'una tècnica innovadora per a l'anàlisi de prestacions de xarxes multiservei d'alta capacitat que es basa en un nou enfocament del modelitzat analític de sistemes que operen a diferents escales temporals. Aquest enfocament utilitza l'anàlisi del transitori d'una sèrie de subcadenes absorbents i l'anomenem absorbing Markov chain Approximation (AMCA). Els nostres resultats mostren que per a un cost computacional donat, AMCA calcula els paràmetres de prestacions habituals d
[-]
|