- -

Energy approach to the unstressed geometry of single-walled carbon nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy approach to the unstressed geometry of single-walled carbon nanotubes

Mostrar el registro completo del ítem

Merli Gisbert, R.; Monleón Cremades, S.; Lazaro, C. (2017). Energy approach to the unstressed geometry of single-walled carbon nanotubes. Meccanica. 52(1-2):213-230. doi:10.1007/s11012-016-0389-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/108048

Ficheros en el ítem

Metadatos del ítem

Título: Energy approach to the unstressed geometry of single-walled carbon nanotubes
Autor: Merli Gisbert, Rafael Monleón Cremades, Salvador Lazaro, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] In this paper, the geometry of single-walled carbon nanotubes without any external loading is analyzed via an energy procedure. The nanotube is assumed to be inscribed into a perfect cylinder of unknown diameter, which ...[+]
Palabras clave: Carbon nanotubes , Molecular mechanics , Energy minimization , Prestressed state
Derechos de uso: Reserva de todos los derechos
Fuente:
Meccanica. (issn: 0025-6455 )
DOI: 10.1007/s11012-016-0389-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11012-016-0389-z
Tipo: Artículo

References

Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91:215505–215508

Bagolini L, Gala F, Zollo G (2012) Methane cracking on single-wall carbon nanotubes studied by semi-empirical tigh binding simulations. Carbon 50:411–420

Belytschko T, Xiao SP, Schatz GC et al (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430–235437 [+]
Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91:215505–215508

Bagolini L, Gala F, Zollo G (2012) Methane cracking on single-wall carbon nanotubes studied by semi-empirical tigh binding simulations. Carbon 50:411–420

Belytschko T, Xiao SP, Schatz GC et al (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430–235437

Benvenuti E (2015) Elechtromechanical behavior, end enhancements and radial elasticity of single-walled CNTs: a physically-consistent model based on nonlocal charges. Int J Solids Struct 72:190–205

Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540

Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics (vol 80), Springer, Berlin

Hernández E, Goze C, Bernier P et al (1998) Elastic properties of C and $$B_xC_yN_z$$ B x C y N z composite Nanotubes. Phys Rev Lett 80:4502–4505

Iijima S, Brabec C, Maiti A et al (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089–2092

Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499

Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces. Compos Sci Technol 63:1517–1524

Li X, Yang W, Liu B (2007) Bending induced rippling and twisting of multiwalled carbon nanotubes. Phys Rev Lett 98:205502–205505

Malagú M, Benvenuti E, Simone A (2015) One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterizaton. Eur J Mech A Solids 54:160–170

Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605

Merli R, Lázaro C, Monleón S et al (2013) A molecular structural mechanics model applied to the static behavior of single-walled Carbon nanotubes: new general formulation. Comput Struct 127:68–87

Merli R, Lázaro C, Monleón S et al (2015) Geometrical nonlinear formulation of a molecular mechanics model applied to the structural analysis of single-walled carbon nanotubes. Int J Solids Struct. 58:157–177

Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for singlewalled carbon nanotubes. Carbon 42:39–45

Natsuki T, Endo M (2004) Stress simulation of carbon nanotubes in tension and compression. Carbon 42:2147–2151

Odegard GM, Gates TS, Nicholson LM et al (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880

Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821

Paulson S, Falvo MR, Snider N et al (1999) In situ resistance measurements of strained carbon nanotubes. Appl Phys Lett 75:2936–2938

Rochefort A, Avouris P, Lesage F et al (1999) Electrical and mechanical properties of distorted carbon nanotubes. Phys Rev B 60:13824–13830

Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592–12595

Srivastava D, Menon M, Cho K (1999) Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 83:2973–2976

Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679

Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 41:5451–5461

Wang X, Wang X, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69:315–321

Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092

Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

Zaeri MM, Ziaei-Rad S, Vahedi A et al (2010) Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 48:3916–3930

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem