- -

τ-metrizable spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

τ-metrizable spaces

Show full item record

Megaritis, A. (2018). τ-metrizable spaces. Applied General Topology. 19(2):253-260. doi:10.4995/agt.2018.9009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109460

Files in this item

Item Metadata

Title: τ-metrizable spaces
Author:
Issued date:
Abstract:
[EN] In [1], A. A. Borubaev introduced the concept of τ-metric space, where τ is an arbitrary cardinal number. The class of τ-metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for τ ...[+]
Subjects: τ-metric space , τ-metrizable space , τ-metrization theorem
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2018.9009
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2018.9009
Thanks:
The author would like to thank both referees for their valuable comments and suggestions.
Type: Artículo

References

A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344-349. https://doi.org/10.1016/j.topol.2015.12.045

R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.

J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. [+]
A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344-349. https://doi.org/10.1016/j.topol.2015.12.045

R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.

J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

L. A. Steen and J. A. Jr. Seebach, Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995.

S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004.

[-]

This item appears in the following Collection(s)

Show full item record