Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Recio Recio, Jorge Abel | es_ES |
dc.contributor.author | Crespo-Peremarch, Pablo | es_ES |
dc.contributor.author | Sapena, Marta | es_ES |
dc.date.accessioned | 2018-10-07T04:33:06Z | |
dc.date.available | 2018-10-07T04:33:06Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1010-6049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/109833 | |
dc.description.abstract | [EN] Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under [grant number CGL2013-46387-C2-1-R]; Fondo de Garantia Juvenil under [contract number PEJ-2014-A-45358]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Geocarto International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fuel strata | es_ES |
dc.subject | Object-based classification | es_ES |
dc.subject | LiDAR | es_ES |
dc.subject | WorldView-2 | es_ES |
dc.subject | Sentinel-2 | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/10106049.2016.1265595 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2013-46387-C2-1-R/ES/INTEGRACION DE TECNICAS AVANZADAS DE LIDAR Y METODOS PARA LA MODELIZACION Y CARTOGRAFIADO DE PARAMETROS DE COMBUSTIBILIDAD EN BOSQUES MEDITERRANEOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-08-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Ruiz Fernández, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International. 33(5):443-457. https://doi.org/10.1080/10106049.2016.1265595 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/10106049.2016.1265595 | es_ES |
dc.description.upvformatpinicio | 443 | es_ES |
dc.description.upvformatpfin | 457 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\324972 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |