- -

X11-like Seasonal Adjustment of Daily Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

X11-like Seasonal Adjustment of Daily Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ladiray, Dominique es_ES
dc.contributor.author Mazzi, Gian Luigi es_ES
dc.date.accessioned 2018-11-05T07:57:18Z
dc.date.available 2018-11-05T07:57:18Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486894
dc.identifier.uri http://hdl.handle.net/10251/111839
dc.description Resumen de la ponencia es_ES
dc.description.abstract [EN] High frequency data, i.e. data observed at infra-monthly intervals, have been used for decades by statisticians and econometricians in the financial and industrial worlds. Weekly data were already used in the 20’s by official statisticians to assess the short-term evolution of the Economy. For example, Crum (1927) studied the series of weekly bank debits outside New York city from 1919 to 1026 and proposed a method to seasonally adjust these data based on the median-link-relative method developed by Persons (1919). Nowadays, these data are ubiquitous and concern almost all sectors of the Economy. Numerous variables are collected weekly, daily or even hourly, that could bring valuable information to official statisticians in their evaluation of the state and short-term evolution of the Economy. But these data also bring challenges with them: they are very volatiles and show more outliers and breaks; they present multiple and non integer periodicities and their correct modeling implies numerous regressors: calendar effects, outliers, harmonics. The current statistician’s traditional toolbox, methods and algorithms, has been developed mainly for monthly and quarterly series; how should these tools be adapted to handle time series of thousands observations with specific characteristics and dynamics efficiently? We present some ideas to adapt the main seasonal adjustment methods, and especially “the X11 family” i.e. methods based on moving averages like X11, X11-ARIMA, X12-ARIMA and X-13ARIMA-SEATS. We also make some recommendations about the most appropriate methods for pretreatment and filtering of daily and weekly data. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject QCA es_ES
dc.subject PLS es_ES
dc.subject SEM es_ES
dc.subject Conference es_ES
dc.subject Seasonal adjustment es_ES
dc.subject High-frecuency data es_ES
dc.subject Ruptures es_ES
dc.subject Calendar effects es_ES
dc.title X11-like Seasonal Adjustment of Daily Data es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2018.2018.8574
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ladiray, D.; Mazzi, GL. (2018). X11-like Seasonal Adjustment of Daily Data. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 266-266. https://doi.org/10.4995/CARMA2018.2018.8574 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2018 - 2nd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 12-13,2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2018/paper/view/8574 es_ES
dc.description.upvformatpinicio 266 es_ES
dc.description.upvformatpfin 266 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\8574 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem