- -

A class of ideals in intermediate rings of continuous functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A class of ideals in intermediate rings of continuous functions

Show simple item record

Files in this item

dc.contributor.author Bag, Sagarmoy es_ES
dc.contributor.author Acharyya, Sudip Kumar es_ES
dc.contributor.author Mandal, Dhananjoy es_ES
dc.date.accessioned 2019-04-04T08:05:57Z
dc.date.available 2019-04-04T08:05:57Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118964
dc.description.abstract [EN] For any completely regular Hausdorff topological space X, an intermediate ring A(X) of continuous functions stands for any ring lying between C∗(X) and C(X). It is a rather recently established fact that if A(X) ≠ C(X), then there exist non maximal prime ideals in A(X).We offer an alternative proof of it on using the notion of z◦-ideals. It is realized that a P-space X is discrete if and only if C(X) is identical to the ring of real valued measurable functions defined on the σ-algebra β(X) of all Borel sets in X. Interrelation between z-ideals, z◦-ideal and ƷA-ideals in A(X) are examined. It is proved that within the family of almost P-spaces X, each ƷA -ideal in A(X) is a z◦-ideal if and only if each z-ideal in A(X) is a z◦-ideal if and only if A(X) = C(X). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject P-space es_ES
dc.subject Almost P-space es_ES
dc.subject UMP-space es_ES
dc.subject Z-ideal es_ES
dc.subject Z◦-ideal es_ES
dc.subject ƷA-ideal es_ES
dc.title A class of ideals in intermediate rings of continuous functions es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:29:43Z
dc.identifier.doi 10.4995/agt.2019.10171
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bag, S.; Acharyya, SK.; Mandal, D. (2019). A class of ideals in intermediate rings of continuous functions. Applied General Topology. 20(1):109-117. https://doi.org/10.4995/agt.2019.10171 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10171 es_ES
dc.description.upvformatpinicio 109 es_ES
dc.description.upvformatpfin 117 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.relation.references S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions-some remarks, Topology Appl. 160 (2013), 1603-1605. https://doi.org/10.1016/j.topol.2013.06.011 es_ES
dc.relation.references H. Azadi,M. Henriksen and E. Momtahan, Some properties of algebra of real valued measurable functions, Acta. Math. Hunger 124 (2009), 15-23. https://doi.org/10.1007/s10474-009-8138-6 es_ES
dc.relation.references F. Azarpanah, O.A.S. Karamzadeh and R. A. Aliabad, On z◦-ideals of C(X), Fund.Math. 160 (1999), 15-25. es_ES
dc.relation.references F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, Onideals consisting entirely of zero Divisors, Communications in Algebra 28 (2000), 1061-1073. https://doi.org/10.1080/00927870008826878 es_ES
dc.relation.references S. Bag, S. K. Acharyya and D. Mandal, z◦-ideals in intermediate rings of ordered field valued continuous functions, communicated. es_ES
dc.relation.references B. Banerjee, S. K. Ghosh and M. Henriksen, Unions of minimal prime ideals in rings of continuous functions on a compact spaces, Algebra Universalis 62 (2009), 239-246. https://doi.org/10.1007/s00012-010-0051-x es_ES
dc.relation.references L. H. Byun and S. Watson, Prime and maximals ideal in subrings of C(X) , Topology Appl. 40 (1991), 45-62 es_ES
dc.relation.references L. Gillman and M. Jerison, Rings of continuous functions, New York: Van Nostrand Reinhold Co., 1960. es_ES
dc.relation.references L. Gilmann and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. https://doi.org/10.1090/s0002-9947-1954-0063646-5 es_ES
dc.relation.references M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.1090/s0002-9947-1965-0194880-9 es_ES
dc.relation.references W. Murray, J. Sack, S. Watson, P-space and intermediate rings of continuous functions, Rocky Mountain J. Math. 47 (2017), 2757-2775. https://doi.org/10.1216/rmj-2017-47-8-2757 es_ES
dc.relation.references J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13(1963), 31-50. https://doi.org/10.1112/plms/s3-13.1.31 es_ES
dc.relation.references R. Levy, Almost p-spaces, Canad. J. Math. 29 (1977) 284-288. es_ES
dc.relation.references G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon 34 (1989),941-956. es_ES
dc.relation.references P. Panman, J. Sack and S. Watson, Correspondences between ideals and z-filters for rings of continuous functions between C∗ and C, Commentationes Mathematicae 52,no. 1, (2012) 11-20. es_ES
dc.relation.references J. Sack and S. Watson, C and C∗ among intermediate rings, Topology Proceedings 43(2014), 69-82. es_ES
dc.relation.references J. Sack and S. Watson, Characterizing C(X) among intermediate C-rings on X, Topology Proceedings 45 (2015), 301-313. es_ES


This item appears in the following Collection(s)

Show simple item record