- -

Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos-Simon, Clara es_ES
dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Villafuerte, Laura es_ES
dc.date.accessioned 2019-05-11T20:04:22Z
dc.date.available 2019-05-11T20:04:22Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0893-9659 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120362
dc.description.abstract [EN] The aim of this paper is to solve a class of non-autonomous linear fractional differential equations with random inputs. A mean square convergent series solution is constructed in the case that the fractional order a of that Caputo derivative lies in ]0,1] using a random Frobenius approach. The analysis is conducted by using the so-called mean square random calculus. The mean square convergence of the series solution is established assuming mild conditions on random inputs (diffusion coefficient and initial condition). We show that these conditions are satisfied for a variety of unbounded random variables. In addition, explicit expressions to approximate the mean, the variance and the covariance functions of the random series solution are given. Two full illustrative examples are shown. (C) 2017 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship Authors gratefully acknowledge the comments made by reviewers, which have greatly enriched the manuscript. This work has been partially supported by Ministerio de Economia y Competitividad grant MTM2013-41765-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics Letters es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Random fractional differential equations es_ES
dc.subject Random mean square calculus es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.aml.2017.11.009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Burgos-Simon, C.; Calatayud-Gregori, J.; Cortés, J.; Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters. 78:95-104. https://doi.org/10.1016/j.aml.2017.11.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.aml.2017.11.009 es_ES
dc.description.upvformatpinicio 95 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.relation.pasarela S\347508 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem