Mostrar el registro sencillo del ítem
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Villafuerte, Laura | es_ES |
dc.date.accessioned | 2019-05-11T20:04:22Z | |
dc.date.available | 2019-05-11T20:04:22Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0893-9659 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120362 | |
dc.description.abstract | [EN] The aim of this paper is to solve a class of non-autonomous linear fractional differential equations with random inputs. A mean square convergent series solution is constructed in the case that the fractional order a of that Caputo derivative lies in ]0,1] using a random Frobenius approach. The analysis is conducted by using the so-called mean square random calculus. The mean square convergence of the series solution is established assuming mild conditions on random inputs (diffusion coefficient and initial condition). We show that these conditions are satisfied for a variety of unbounded random variables. In addition, explicit expressions to approximate the mean, the variance and the covariance functions of the random series solution are given. Two full illustrative examples are shown. (C) 2017 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | Authors gratefully acknowledge the comments made by reviewers, which have greatly enriched the manuscript. This work has been partially supported by Ministerio de Economia y Competitividad grant MTM2013-41765-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics Letters | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Random fractional differential equations | es_ES |
dc.subject | Random mean square calculus | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.aml.2017.11.009 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Burgos-Simon, C.; Calatayud-Gregori, J.; Cortés, J.; Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters. 78:95-104. https://doi.org/10.1016/j.aml.2017.11.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.aml.2017.11.009 | es_ES |
dc.description.upvformatpinicio | 95 | es_ES |
dc.description.upvformatpfin | 104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 78 | es_ES |
dc.relation.pasarela | S\347508 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |