- -

Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p>5

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p>5

Show full item record

Cordero Barbero, A.; Jordan-Lluch, C.; Sanabria-Codesal, E.; Torregrosa Sánchez, JR. (2018). Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p>5. Journal of Computational and Applied Mathematics. 330:748-758. https://doi.org/10.1016/j.cam.2017.02.032

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121415

Files in this item

Item Metadata

Title: Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p>5
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] It is known that the concept of optimality is not defined for multidimensional iterative methods for solving nonlinear systems of equations. However, usually optimal fourth order schemes (extended to the case of several ...[+]
Subjects: Nonlinear systems , Iterative method , Convergence , Efficiency index , Fisher's equation
Copyrigths: Embargado
Source:
Journal of Computational and Applied Mathematics. (issn: 0377-0427 )
DOI: 10.1016/j.cam.2017.02.032
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.cam.2017.02.032
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, MTM2015-64013-P and Generalitat Valenciana PROMETEO/2016/089.
Type: Artículo

This item appears in the following Collection(s)

Show full item record