Mostrar el registro sencillo del ítem
dc.contributor.author | Casabán, M.C. | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2019-06-02T20:01:04Z | |
dc.date.available | 2019-06-02T20:01:04Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121430 | |
dc.description.abstract | [EN] This paper is aimed to extend, the non-autonomous case, the results recently given in the paper [1] for solving autonomous linear and quadratic random matrix differential equations. With this goal, important deterministic results like the Abel-Liouville-Jacobi's formula, are extended to the random scenario using the so-called $\mathrm{L}_{p}$-random matrix calculus. In a first step, random time-dependent matrix linear differential equations are studied and, in a second step, random non-autonomous Riccati matrix differential equations are solved using the hamiltonian approach based on dealing with the extended underlying linear system. Illustrative numerical examples are also included. [1] M.-C. Casabán, J.-C. Cortés, L. Jódar, Solving linear and quadratic random matrix differential equations: A mean square approach, Applied Mathematical Modelling 40 (2016) 9362-9377. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministerio de Economia y Competitividad grant MTM2013-41765-P and by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mean square random calculus | es_ES |
dc.subject | Lp-random matrix calculus | es_ES |
dc.subject | Random non-autonomous Riccati matrix differential equation | es_ES |
dc.subject | Analytic-numerical solution | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2016.11.049 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Casabán, M.; Cortés, J.; Jódar Sánchez, LA. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics. 330:937-954. https://doi.org/10.1016/j.cam.2016.11.049 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2016.11.049 | es_ES |
dc.description.upvformatpinicio | 937 | es_ES |
dc.description.upvformatpfin | 954 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 330 | es_ES |
dc.relation.pasarela | S\338298 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |