- -

Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casabán, M.C. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2019-06-02T20:01:04Z
dc.date.available 2019-06-02T20:01:04Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121430
dc.description.abstract [EN] This paper is aimed to extend, the non-autonomous case, the results recently given in the paper [1] for solving autonomous linear and quadratic random matrix differential equations. With this goal, important deterministic results like the Abel-Liouville-Jacobi's formula, are extended to the random scenario using the so-called $\mathrm{L}_{p}$-random matrix calculus. In a first step, random time-dependent matrix linear differential equations are studied and, in a second step, random non-autonomous Riccati matrix differential equations are solved using the hamiltonian approach based on dealing with the extended underlying linear system. Illustrative numerical examples are also included. [1] M.-C. Casabán, J.-C. Cortés, L. Jódar, Solving linear and quadratic random matrix differential equations: A mean square approach, Applied Mathematical Modelling 40 (2016) 9362-9377. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Economia y Competitividad grant MTM2013-41765-P and by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Mean square random calculus es_ES
dc.subject Lp-random matrix calculus es_ES
dc.subject Random non-autonomous Riccati matrix differential equation es_ES
dc.subject Analytic-numerical solution es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2016.11.049 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Casabán, M.; Cortés, J.; Jódar Sánchez, LA. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics. 330:937-954. https://doi.org/10.1016/j.cam.2016.11.049 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.cam.2016.11.049 es_ES
dc.description.upvformatpinicio 937 es_ES
dc.description.upvformatpfin 954 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 330 es_ES
dc.relation.pasarela S\338298 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem