Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet-Sanz, Marc | es_ES |
dc.date.accessioned | 2019-06-07T20:04:04Z | |
dc.date.available | 2019-06-07T20:04:04Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121751 | |
dc.description.abstract | [EN] This paper presents a methodology to quantify computationally the uncertainty in a class of differential equations often met in Mathematical Physics, namely random non-autonomous second-order linear differential equations, via adaptive generalized Polynomial Chaos (gPC) and the stochastic Galerkin projection technique. Unlike the random Frobenius method, which can only deal with particular random linear differential equations and needs the random inputs (coefficients and forcing term) to be analytic, adaptive gPC allows approximating the expectation and covariance of the solution stochastic process to general random second-order linear differential equations. The random inputs are allowed to functionally depend on random variables that may be independent or dependent, both absolutely continuous or discrete with infinitely many point masses. These hypotheses include a wide variety of particular differential equations, which might not be solvable via the random Frobenius method, in which the random input coefficients may be expressed via a Karhunen-Loeve expansion. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. The authors are grateful for the valuable comments raised by the reviewer, which have improved the final version of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | De Gruyter Open | es_ES |
dc.relation.ispartof | Open Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Non-autonomous and random dynamical systems | es_ES |
dc.subject | Computational uncertainty quantification | es_ES |
dc.subject | Adaptive generalized Polynomial Chaos | es_ES |
dc.subject | Stochastic Galerkin projection technique | es_ES |
dc.subject | Random Frobenius method | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/math-2018-0134 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics. 16(1):1651-1666. https://doi.org/10.1515/math-2018-0134 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1515/math-2018-0134 | es_ES |
dc.description.upvformatpinicio | 1651 | es_ES |
dc.description.upvformatpfin | 1666 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2391-5455 | es_ES |
dc.relation.pasarela | S\374186 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |