- -

ALTEA: A Software Tool for the Evaluation of New Biomarkers for Alzheimer s Disease by Means of Textures Analysis on Magnetic Resonance Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ALTEA: A Software Tool for the Evaluation of New Biomarkers for Alzheimer s Disease by Means of Textures Analysis on Magnetic Resonance Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Gómez,Carlos es_ES
dc.contributor.author Ortiz-Ramón, Rafael es_ES
dc.contributor.author Mollá, Enrique es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2019-06-23T20:01:12Z
dc.date.available 2019-06-23T20:01:12Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122558
dc.description.abstract [EN] The current criteria for diagnosing Alzheimer's disease (AD) require the presence of relevant cognitive deficits, so the underlying neuropathological damage is important by the time the diagnosis is made. Therefore, the evaluation of new biomarkers to detect AD in its early stages has become one of the main research focuses. The purpose of the present study was to evaluate a set of texture parameters as potential biomarkers of the disease. To this end, the ALTEA (ALzheimer TExture Analyzer) software tool was created to perform 2D and 3D texture analysis on magnetic resonance images. This intuitive tool was used to analyze textures of circular and spherical regions situated in the right and left hippocampi of a cohort of 105 patients: 35 AD patients, 35 patients with early mild cognitive impairment (EMCI) and 35 cognitively normal (CN) subjects. A total of 25 statistical texture parameters derived from the histogram, the Gray-Level Co-occurrence Matrix and the Gray-Level Run-Length Matrix, were extracted from each region and analyzed statistically to study their predictive capacity. Several textural parameters were statistically significant (p < 0.05) when differentiating AD subjects from CN and EMCI patients, which indicates that texture analysis could help to identify the presence of AD. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grant BFU2015-64380-C2-2-R. R.O.-R. was supported by grant ACIF/2015/078 from the Conselleria d'Educacio, Investigacio, Cultura i Esport of the Valencian Community (Spain). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Diagnostics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alzheimer s disease es_ES
dc.subject Mild cognitive impairment es_ES
dc.subject Software es_ES
dc.subject Biomarkers es_ES
dc.subject Texture analysis es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title ALTEA: A Software Tool for the Evaluation of New Biomarkers for Alzheimer s Disease by Means of Textures Analysis on Magnetic Resonance Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/diagnostics8030047 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/J4NIH/NATIONAL INSTITUTE ON AGING/1U01AG024904-01/US/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2015%2F078/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation López-Gómez, C.; Ortiz-Ramón, R.; Mollá, E.; Moratal, D. (2018). ALTEA: A Software Tool for the Evaluation of New Biomarkers for Alzheimer s Disease by Means of Textures Analysis on Magnetic Resonance Images. Diagnostics. 8(3). https://doi.org/10.3390/diagnostics8030047 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/diagnostics8030047 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2075-4418 es_ES
dc.identifier.pmid 30029524
dc.identifier.pmcid PMC6164667
dc.relation.pasarela S\371791 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem