- -

Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benajes, Jesús es_ES
dc.contributor.author Pastor, José V. es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.date.accessioned 2019-06-28T20:04:32Z
dc.date.available 2019-06-28T20:04:32Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0732-8818 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122880
dc.description.abstract [EN] This work describes the update of an optical engine design with the aim of increasing its capabilities when used for combustion studies. The criteria followed to perform the optical engine redesign were: maximize the optical accessibility to the combustion chamber, minimize the time consumed to clean the optical parts, and minimize the adaptation costs. To meet these requirements, a modular design using window-holders to fit the windows in the optical flange, was proposed. This novel solution allows optical access near the cylinder-head plane while maintaining high operating flexibility (i.e. fast transition between optical and metal engine, and very fast cleaning procedure). The new engine design has three additional optical accesses to the combustion chamber and resulted in more efficient operation compared to the original design, reducing the time consumed to clean the optical parts from 40 down to 10 min. Two main parameters of the new engine were characterized, the effective compression ratio and the rotatory flow field velocity (swirl). The characterization process revealed very similar values between the effective and geometric compression ratios (14.7:1 vs 14.2:1), which confirms the use of appropriate dimensional tolerances during the machining process and low amount of blow-by. Finally, the swirl ratio was characterized through particle image velocimetry measurements for different crank timings at 1200 rpm and motored conditions, using the optical piston with a cylindrical bowl. This method revealed swirl ratios varying from 1 to 1.7 depending on the timing considered, with increasing trend as the piston moves towards the top dead center. es_ES
dc.description.sponsorship This work has been partially funded by the Spanish Government under the project HiReCo TRA2014-58870-R. The equipment used has been partially funded by FEDER project ICTS-2012-06, framed in the operational program of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. The author J. Monsalve-Serrano acknowledges the financial support from the Universitat Politecnica de Valencia under the grant "Ayudas Para la Contratacion de Doctores para el Acceso al Sistema Espanol de Ciencia, Tecnologia e Innovacion". The authors wish to thank Daniel Lerida for his technical work during the redesign process. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Experimental Techniques es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optical engine es_ES
dc.subject Efficiency es_ES
dc.subject Combustion es_ES
dc.subject Swirl es_ES
dc.subject Optimization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40799-017-0219-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Benajes, J.; Pastor, JV.; García Martínez, A.; Monsalve-Serrano, J. (2018). Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies. Experimental Techniques. 42(1):55-68. https://doi.org/10.1007/s40799-017-0219-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40799-017-0219-9 es_ES
dc.description.upvformatpinicio 55 es_ES
dc.description.upvformatpfin 68 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\351721 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Dargay J, Gately D (1999) Income’s effect on car and vehicle ownership, worldwide: 1960-2015. Transp Res A Policy Pract 33(2):101–138 es_ES
dc.description.references European Automobile Manufacturers’ Association (2015) The automobile industry pocket guide 2014-2015. Technical report es_ES
dc.description.references Energy, Transport and Environment Indicators (2014) Eurostat pocketbooks. Technical report. Cat. No: KS-DK-14-001-EN-N. https://doi.org/10.2785/56625 es_ES
dc.description.references Environmental Protection Agency (1999) Nitrogen Oxides (NOx), Why and how they are controlled. Technical report. Report Number: EPA-456/F-99-006R. https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf es_ES
dc.description.references Environmental European Agency (2013) Emissions of primary PM2.5 and PM10 particulate matter. Technical report. Indicator codes: CSI 003 , APE 009. https://www.eea.europa.eu/data-and-maps/indicators/emissions-of-primary-particles-and-5/assessment-3 es_ES
dc.description.references (2009) Regulation (EC) 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. Off J Eur Union L 188:1–13 es_ES
dc.description.references Pastor JV, García-Oliver JM, García A, Micó C, Möller S (2016) Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combust Flame 164:212–223 es_ES
dc.description.references Desantes JM, Pastor JV, García-Oliver JM, Briceño FJ (2014) An experimental analysis on the evolution of the transient tip penetration in reacting diesel sprays. Combust Flame 161(8):2137–2150 es_ES
dc.description.references Desantes JM, Arregle JM, Lopez JJ (2006) Scaling laws for free turbulent gas jets and diesel-like sprays. Atomization Sprays 16:443–473 es_ES
dc.description.references Desantes JM, Torregrosa AJ, Broatch A (2001) Experiments on flow noise generation in simple exhaust geometries. Acustica 87(1):46–55 es_ES
dc.description.references Benajes J, García A, Monsalve-Serrano J, Boronat V Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Convers Manag 136:142–151 es_ES
dc.description.references Payri R, Gimeno J, Bardi M, Plazas A (2013) Study liquid length penetration results obtained with a direct acting piezo electric injector. Appl Energy 106:152–162 es_ES
dc.description.references Garcia A, Monsalve-Serrano J, Heuser B, Jakob M, Kremer F, Pischinger S (2016) Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Convers Manag 108:243–254 es_ES
dc.description.references An H, Chung J, Lee S, Song S (2015) The effects of hydrogen addition on the auto-ignition delay of homogeneous primary reference fuel/air mixtures in a rapid compression machine. Int J Hydrog Energy 40(40):13994–14005 es_ES
dc.description.references Payri F, Desantes JM, Pastor JV (1996) LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. Diesel engine with axisymmetric piston-bowls. Exp Fluids 22(2):118–128 es_ES
dc.description.references Benajes J, Molina S, García A, Monsalve-Serrano J, Durrett R (2014) Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Appl Energy 129:1–9 es_ES
dc.description.references Desantes JM, Lopez JJ, García JM (2007) Evaporative diesel spray modeling. Atomization Sprays 17:193–231 es_ES
dc.description.references Battistoni M, Mariani F, Risi F, Poggiani C, Combustion CFD (2015) Modeling of a spark ignited optical access engine fueled with gasoline and ethanol. Energy Procedia 82:424–431 es_ES
dc.description.references Benajes J, García A, Pastor JM, Monsalve-Serrano J (2016) Effects of piston bowl geometry on reactivity controlled compression ignition heat transfer and combustion losses at different engine loads. Energy 98:64–77 es_ES
dc.description.references Benajes J, García A, Monsalve-Serrano J, Balloul I, Pradel G (2016) An assessment of the dual-mode RCCI/CDC capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Convers Manag 123:381–391 es_ES
dc.description.references Benajes J, Martín J, García A, Villalta D, Warey A (2015) In-cylinder soot radiation heat transfer in direct-injection diesel engines. Energy Convers Manag 106:414–427 es_ES
dc.description.references Luján JM, Climent H, Dolz V, Moratal A, Borges-Alejo J, Soukeur Z (2016) Potential of exhaust heat recovery for intake charge heating in a diesel engine transient operation at cold conditions. Appl Therm Eng 105:501–508 es_ES
dc.description.references Bohla T, Tiana G, Zengb W, Heb X, Roskilly A (2014) Optical investigation on diesel engine fuelled by vegetable oils. Inter Conf on Appl energy, ICAE2014. Energy Procedia 61:670–674 es_ES
dc.description.references Bizon K, Continillo G, Lombardi S, Sementa P, Vaglieco B (2016) Independent component analysis of cycle resolved combustion images from a spark ignition optical engine. Combust Flame 163:258–269 es_ES
dc.description.references Mancaruso E, Sequino L, Vaglieco B (2016) Analysis of the pilot injection running common rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel 178:188–201 es_ES
dc.description.references Zeng W, Sjöberg M, Reuss D, Hu Z (2016) High-speed PIV, spray, combustion luminosity, and infrared fuel-vapor imaging for probing tumble-flow-induced asymmetry of gasoline distribution in a spray-guided stratified-charge DISI engine. Proc Combust Inst 36(3):3459–3466 es_ES
dc.description.references Catapano F, Sementa P, Vaglieco B (2016) Air-fuel mixing and combustion behavior of gasoline-ethanol blends in a GDI wall-guided turbocharged multi-cylinder optical engine. Renew Energy 96:319–332 es_ES
dc.description.references Merola S, Tornatore C, Irimescu A, Marchitto L, Valentino G (2016) Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline. Energy 108:50–62 es_ES
dc.description.references Marseglia G, Costa M, Catapano F, Sementa P, Vaglieco B (2017) Study about the link between injection strategy and knock onset in an optically accessible multi-cylinder GDI engine. Energy Convers Manag 134:1–19 es_ES
dc.description.references Irimescu A, Merola S, Tornatore C, Valentino G (2016) Effect of coolant temperature on air-fuel mixture formation and combustion in an optical direct injection spark ignition engine fueled with gasoline and butanol. J Energy Inst 90:452–465. https://doi.org/10.1016/j.joei.2016.03.004. es_ES
dc.description.references Irimescu A, Merola S, Valentino G (2016) Application of an entrainment turbulent combustion model with validation based on the distribution of chemical species in an optical spark ignition engine. Appl Energy 162:908–923 es_ES
dc.description.references Pastor JV, García-Oliver JM, García A, Pinotti M (2016) Laser induced plasma methodology for ignition control in direct injection sprays. Energy Convers Manag 120:144–156 es_ES
dc.description.references Regan C, Chun K, Schock H (1987) Engine flow visualization using a copper vapor laser. Proc SPIE: New Dev Appl Gas Lasers 737:17–27 es_ES
dc.description.references Le Coz J-F, Henriot S, Pinchon P (1990) An experimental and computational analysis of the flow field in a four-valve spark ignition engine-focus on cycle-resolved turbulence. SAE International in United States. https://doi.org/10.4271/900056 es_ES
dc.description.references Catapano F, Sementa P, Vaglieco B (2013) Optical characterization of bio-ethanol injection and combustion in a small DISI engine for two wheels vehicles. Fuel 106:651–666 es_ES
dc.description.references Bowditch F (1958) Cylinder and Piston Assembly. US Patent, App 2,919,688, 2,919,688 https://www.google.com/patents/US2919688 es_ES
dc.description.references Pastor JV, García-Oliver JM, García A, Micó C, Durrett R (2013) A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Appl Energy 104:568–575 es_ES
dc.description.references Di Iorio S.; Sementa P.; Vaglieco B. Analysis of combustion of methane and hydrogen–methane blends in small DI SI (direct injection spark ignition) engine using advanced diagnostics. Energy 2016, 108, 99–107. es_ES
dc.description.references Sementa P, Vaglieco B, Catapano F (2012) Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol. Fuel 96:204–219 es_ES
dc.description.references Richman R, Reynolds W (1984) The development of a transparent cylinder engine for piston engine fluid mechanics research. SAE International in United States. https://doi.org/10.4271/840379 es_ES
dc.description.references Bates S (1988) A transparent engine for flow and combustion visualization studies. SAE International in United States. https://doi.org/10.4271/880520 es_ES
dc.description.references Zhang Y, Zhang R, Rao L, Kim D, Kook S (2017) The influence of a large methyl ester on in-flame soot particle structures in a small-bore diesel engine. Fuel 194:423–435 es_ES
dc.description.references Reuss D (2000) Cyclic variability of large-scale turbulent structures in directed and undirected IC engine flows. SAE International in United States. https://doi.org/10.4271/2000-01-0246 es_ES
dc.description.references López JJ, García-Oliver JM, García A, Domenech V (2014) Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under partially premixed combustion conditions. Appl Therm Eng 70(1):996–1006 es_ES
dc.description.references Benajes J, García A, Domenech V, Durrett R (2013) An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Appl Therm Eng 52(2):468–477 es_ES
dc.description.references Klein M, Eriksson L, Åslund J (2006) Compression ratio estimation based on cylinder pressure data. Control Eng. Practice 14(3):197–211 es_ES
dc.description.references Payri F, Olmeda P, Martín J, García AA (2011) Complete 0D thermodynamic predictive model for direct injection diesel engines. Appl Energy 88(12):4632–4641 es_ES
dc.description.references Payri F, Olmeda P, Martin J, Carreño R (2014) A new tool to perform global energy balances in DI diesel engines. SAE Int. J. Engines 7(1):2014-01-0665 es_ES
dc.description.references Benajes J, Olmeda P, Martín J, Carreño RA (2014) New methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Appl Therm Eng 71:389–399 es_ES
dc.description.references Payri F, Margot X, Gil A, Martín J (2005) Computational study of heat transfer to the walls of a DI diesel engine. SAE International in United States. https://doi.org/10.4271/2005-01-0210 es_ES
dc.description.references Martín J (2012) Diagnóstico de la combustión en motores de Diesel de inyeccióon directa. Reverté, Barcelona, España ISBN 978-84-291-4717-9 es_ES
dc.description.references Payri F, Galindo J, Martín J, Arnau F (2007) A Simple Model for Predicting the Trapped Mass in a DI Diesel Engine. SAE International in United States. https://doi.org/10.4271/2007-01-0494 es_ES
dc.description.references Hohenberg G (1976) Definition und Eigenschaften des thermodynamischen Verlustwinkels von Kolbenmaschinen. Automob Ind 4:15–21 es_ES
dc.description.references Armas O (1998) Diagnóstico experimental del proceso de combustión en motores Diesel de inyección directa. Doctoral Thesis, Universitat Politècnica de València es_ES
dc.description.references Berna C, Juliá JE, Escrivá A, Muñoz-Cobo JL, Pastor JV, Micó C (2017) Experimental investigation of the entrained droplet velocities in a submerged jet injected into a stagnant water pool. Exp Thermal Fluid Sci 82:32–41 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem