- -

Intersection and point-to-line solutions for geodesics on the ellipsoid

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Intersection and point-to-line solutions for geodesics on the ellipsoid

Show full item record

Baselga Moreno, S.; Martínez Llario, JC. (2018). Intersection and point-to-line solutions for geodesics on the ellipsoid. Studia Geophysica et Geodaetica. 62(3):353-363. https://doi.org/10.1007/s11200-017-1020-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122902

Files in this item

Item Metadata

Title: Intersection and point-to-line solutions for geodesics on the ellipsoid
Author: Baselga Moreno, Sergio Martínez Llario, José Carlos
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Issued date:
Embargo end date: 2019-07-31
Abstract:
[EN] The paper presents two algorithms for the computation of intersection of geodesics and minimum distance from a point to a geodesic on the ellipsoid, respectively. They are based on the iterative use of direct and ...[+]
Subjects: Geodesic line , Intersection , Ellipsoid , GeographicLib
Copyrigths: Reserva de todos los derechos
Source:
Studia Geophysica et Geodaetica. (issn: 0039-3169 )
DOI: 10.1007/s11200-017-1020-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11200-017-1020-z
Type: Artículo

References

JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html).

Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1).

Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f). [+]
JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html).

Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1).

Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f).

Karney C.F.F., 2013. Algorithms for geodesics. J. Geodesy, 87, 43–55.

Karney C.F.F., 2017. GeographicLib, version 1.47. (http://geographiclib.sourceforge.net).

Patrikalakis N.M., Maekawa T. and Cho W., 2009. Shape Interrogation for Computer Aided Design and Manufacturing. (http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/mathe.html).

PostGIS Development Group, 2017. PostGIS 2.3.3dev Manual. (http://postgis.net/docs/index.html).

Sjöberg L.E., 2002. Intersections on the sphere and ellipsoid. J. Geodesy, 76, 115–120.

Sjöberg L.E., 2006. Direct and indirect geodetic problems on the ellipsoid. Z. Vermess., 131, 35–39.

Sjöberg L.E., 2008. Geodetic intersection on the ellipsoid. J. Geodesy, 82, 565–567.

Sjöberg L.E., 2009. New solutions to classical geodetic problems on the ellipsoid. In: Sideris M.G. (Ed.), Observing our Changing Earth. International Association of Geodesy Symposia 133, 781–784, Springer-Verlag, Berlin, Germany.

Sjöberg L.E. and Shirazian M, 2012. Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration. J. Surv. Eng., 138, 9–16.

Todhunter I., 1886. Spherical Trigonometry, 5th Edition. MacMillan and Co., London, U.K. (http://www.gutenberg.org/ebooks/19770).

Vincenty T., 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 23, 88–93.

[-]

This item appears in the following Collection(s)

Show full item record