- -

Intersection and point-to-line solutions for geodesics on the ellipsoid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intersection and point-to-line solutions for geodesics on the ellipsoid

Mostrar el registro completo del ítem

Baselga Moreno, S.; Martínez Llario, JC. (2018). Intersection and point-to-line solutions for geodesics on the ellipsoid. Studia Geophysica et Geodaetica. 62(3):353-363. https://doi.org/10.1007/s11200-017-1020-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122902

Ficheros en el ítem

Metadatos del ítem

Título: Intersection and point-to-line solutions for geodesics on the ellipsoid
Autor: Baselga Moreno, Sergio Martínez Llario, José Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Fecha difusión:
Fecha de fin de embargo: 2019-07-31
Resumen:
[EN] The paper presents two algorithms for the computation of intersection of geodesics and minimum distance from a point to a geodesic on the ellipsoid, respectively. They are based on the iterative use of direct and ...[+]
Palabras clave: Geodesic line , Intersection , Ellipsoid , GeographicLib
Derechos de uso: Reserva de todos los derechos
Fuente:
Studia Geophysica et Geodaetica. (issn: 0039-3169 )
DOI: 10.1007/s11200-017-1020-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11200-017-1020-z
Tipo: Artículo

References

JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html).

Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1).

Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f). [+]
JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html).

Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1).

Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f).

Karney C.F.F., 2013. Algorithms for geodesics. J. Geodesy, 87, 43–55.

Karney C.F.F., 2017. GeographicLib, version 1.47. (http://geographiclib.sourceforge.net).

Patrikalakis N.M., Maekawa T. and Cho W., 2009. Shape Interrogation for Computer Aided Design and Manufacturing. (http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/mathe.html).

PostGIS Development Group, 2017. PostGIS 2.3.3dev Manual. (http://postgis.net/docs/index.html).

Sjöberg L.E., 2002. Intersections on the sphere and ellipsoid. J. Geodesy, 76, 115–120.

Sjöberg L.E., 2006. Direct and indirect geodetic problems on the ellipsoid. Z. Vermess., 131, 35–39.

Sjöberg L.E., 2008. Geodetic intersection on the ellipsoid. J. Geodesy, 82, 565–567.

Sjöberg L.E., 2009. New solutions to classical geodetic problems on the ellipsoid. In: Sideris M.G. (Ed.), Observing our Changing Earth. International Association of Geodesy Symposia 133, 781–784, Springer-Verlag, Berlin, Germany.

Sjöberg L.E. and Shirazian M, 2012. Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration. J. Surv. Eng., 138, 9–16.

Todhunter I., 1886. Spherical Trigonometry, 5th Edition. MacMillan and Co., London, U.K. (http://www.gutenberg.org/ebooks/19770).

Vincenty T., 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 23, 88–93.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem