- -

Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models

Mostrar el registro completo del ítem

Díaz-Pinto, AY.; Colomer, A.; Naranjo Ornedo, V.; Morales, S.; Xu, Y.; Frangi, AF. (2019). Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 224-232. https://doi.org/10.1007/978-3-030-03493-1_24

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124078

Ficheros en el ítem

Metadatos del ítem

Título: Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models
Autor: Díaz-Pinto, Andrés Yesid Colomer, Adrián Naranjo Ornedo, Valeriana Morales, Sandra Xu, Yanwu Frangi, Alejandro F.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
The performance of a Glaucoma assessment system is highly affected by the number of labelled images used during the training stage. However, labelled images are often scarce or costly to obtain. In this paper, we address ...[+]
Palabras clave: Medical imaging , Retinal Image Synthesis , Fundus Images , DCGAN , VAE
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-03492-4
Fuente:
Intelligent Data Engineering and Automated Learning – IDEAL 2018.
DOI: 10.1007/978-3-030-03493-1_24
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/978-3-030-03493-1_24
Título del congreso: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Lugar del congreso: Madrid, Spain
Fecha congreso: Noviembre 21-23,2018
Serie: Lecture Notes in Computer Science;11314
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/
Agradecimientos:
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. This work was supported by the Project GALAHAD [H2020-ICT-2016-2017, 732613]
Tipo: Capítulo de libro Comunicación en congreso

References

Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80

Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)

Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016) [+]
Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80

Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)

Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016)

Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE Trans. Med. Imaging 37(3), 781–791 (2018)

Costa, P., et al.: Towards adversarial retinal image synthesis. arXiv:1701.08974 (2017)

Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 , November 2015

Köhler, T., Budai, A., Kraus, M.F., Odstrčilik, J., Michelson, G., Hornegger., J.: Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95–100 (2013)

Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Ujjwal, A.S.T.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56 (2014)

Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068, August 2010

Medina-Mesa, E., et al.: Estimating the amount of hemoglobin in the neuroretinal rim using color images and OCT. Curr. Eye Res. 41(6), 798–805 (2015)

sjchoi86: sjchoi86-HRF Database (2017). https://github.com/sjchoi86/retina_dataset/tree/master/dataset . Accessed 02 July 2017

Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras . Accessed 21 May 2017

Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models. In: International Conference on Learning Representations, April 2016

Morales, S., Naranjo, V., Navea, A., Alcañiz, M.: Computer-aided diagnosis software for hypertensive risk determination through fundus image processing. IEEE J. Biomed. Health Inform. 18(6), 1757–1763 (2014)

White, T.: Sampling generative networks. arXiv:1609.04468 (2016)

Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging (2018)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem