- -

Consistently Oriented Dart-based 3D Modelling by Means of Geometric Algebra and Combinatorial Maps

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Consistently Oriented Dart-based 3D Modelling by Means of Geometric Algebra and Combinatorial Maps

Show full item record

Soto Francés, VM.; Sarabia Escrivà, EJ.; Pinazo Ojer, JM. (2019). Consistently Oriented Dart-based 3D Modelling by Means of Geometric Algebra and Combinatorial Maps. Advances in Applied Clifford Algebras. 29(1). https://doi.org/10.1007/s00006-018-0927-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125086

Files in this item

Item Metadata

Title: Consistently Oriented Dart-based 3D Modelling by Means of Geometric Algebra and Combinatorial Maps
Author: Soto Francés, Víctor Manuel Sarabia Escrivà, Emilio José Pinazo Ojer, José Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] The modelling of real world objects is not a straightforward subject. There are many different schemes; constructive solid geome-try (CSG), cell decomposition, boundary representation, etcetera. Obviously, somehow, ...[+]
Subjects: Geometric algebra , Clifford algebra , Multi-vectors , N-gmaps , Building energy simulation , Solid modelling , Combinatorial maps , Flags , Darts
Copyrigths: Cerrado
Source:
Advances in Applied Clifford Algebras. (issn: 0188-7009 )
DOI: 10.1007/s00006-018-0927-y
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00006-018-0927-y
Type: Artículo

References

Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A Boundary Operator for Computing the Homology of Cellular Structures, Technical report, 71 pages, (2011). HAL id: hal-00683031, https://hal.archives-ouvertes.fr/hal-00683031 . Accessed 07 May 2018

Alayrangues, S., Daragon, X., Lachaud, J., Lienhardt, P.: Equivalence between closed connected n-G-maps without multi-incidence and n-surfaces. J. Math. Imaging Vis. 32, 122 (2008). https://doi.org/10.1007/s10851-008-0084-3

Alayrangues, S., Fuchs, L., Lienhardt, P., Peltier, S.: Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results, (2015). HAL id: hal-01142760v2 https://hal.archives-ouvertes.fr/hal-01142760 . Accessed 07 May 2018 [+]
Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A Boundary Operator for Computing the Homology of Cellular Structures, Technical report, 71 pages, (2011). HAL id: hal-00683031, https://hal.archives-ouvertes.fr/hal-00683031 . Accessed 07 May 2018

Alayrangues, S., Daragon, X., Lachaud, J., Lienhardt, P.: Equivalence between closed connected n-G-maps without multi-incidence and n-surfaces. J. Math. Imaging Vis. 32, 122 (2008). https://doi.org/10.1007/s10851-008-0084-3

Alayrangues, S., Fuchs, L., Lienhardt, P., Peltier, S.: Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results, (2015). HAL id: hal-01142760v2 https://hal.archives-ouvertes.fr/hal-01142760 . Accessed 07 May 2018

Baig, S.U., Alizadehashrafi, B.: 3D Generalization of Boundary Representation (B-Rep) of Buildings, FIG Congress 2014, Kuala Lumpur, Malaysia, 16-21 June (2014)

Bellet, T., Arnould, A., Charneau, S., Fuchs, L.: Modélisation nD à base d’algèbres géométriques, (2008) HAL id: hal-00354183 https://hal.archives-ouvertes.fr/hal-00354183 . Accessed 07 May 2018

Bellet, T., Arnould, A., Fuchs, L.: Polyhedral embedding of a topological structure. Applied Geometric Algebras in Computer Science and Engineering (AGACSE 2010), Amsterdam, Netherlands (2010) HAL id: hal-00488183 https://hal.archives-ouvertes.fr/hal-00488183 . Accessed 07 May 2018

Braulio-Gonzalo, M., Bovea, M.D.: Environmental and cost performance of buildings envelope insulation materials to reduce energy demand: Thickness optimisation. Energy Build. 150, 527–545 (2017). https://doi.org/10.1016/j.enbuild.2017.06.005

Brisson, E.: Representing geometric structures in d dimensions: topology and order. Discrete Comput. Geometry 9, 387426 (1993)

Chard, J.A., Shapiro, V.: A multivector data structure for differential forms and equations. Math. Comput. Simul. 54, 3364 (2000). https://doi.org/10.1016/S0378-4754(00),00198-1

Chaïm Zonnenberg, PhD. thesis: Conformal Geometric Algebra Package, Utrecht University Department of Information and Computing Sciences, (July 23, 2007)

Chisolm, E.: Geometric Algebra, (2012) arXiv: 1205.5935v1 [math-ph]

Conradt, O.: Mathematical physics in space and counterspace,(Arbeitshefte, KLEINE REIHE, Band 4), Mathematisch-Astronomische Sektion am Goetheanum und Verlag am Goetheanum, CH-4143 Dornarch, (2008), ISBN-13: 978-3723513330

Conradt, O.: Mechanics in space and counterspace, Journal of Mathematical Physics 41 (6995-7028) (Oct 2000). https://doi.org/10.1063/1.1288495

Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Witte, D.E.J. Glazer, J.: EnergyPlus: creating a new-generation building energy simulation program. Energy Build. 33(4), 319-331 (2001) https://energyplus.net/ . Accessed 07 May 2018

Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. CRC Press, Boca Raton, (2015), ISBN: 978-1-4822-0653-1

Damiand, G., Teillaud, M.: A Generic Implementation of dD Combinatorial Maps in CGAL, International Meshing Roundtable, Oct 2014, Londres, United Kingdom. 82, pp.46 - 58, (2014), https://doi.org/10.1016/j.proeng.2014.10.372 HAL id: hal-01090011 http://doc.cgal.org/ (Linear Cell Complex). Accessed 07 May 2018

Damiand, G.: Contributions aux Cartes Combinatoires et Cartes Généralises : Simplification, Modèles, Invariants Topologiques et Applications, HAL Id: tel-00538456 (2010)

Diakité, A.A., Damiand, G., Maercke, D.V.: Topological reconstruction of complex 3d buildings and automatic extraction of levels of detail, Eurographics Workshop on Urban Data Modelling and Visualisation.(Strasbourg, France.), hal-01011376, pp. 25–30, (2014). https://doi.org/10.2312/udmv.20141074 https://hal.archives-ouvertes.fr/hal-01011376 . Accessed 07 May 2018

Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, A volume in The Morgan Kaufmann Series in Computer Graphics, (2007). ISBN: 978-0-12-369465-2

Dorst, L.: 3D Oriented Projective Geometry Through Versors of $${\mathbb{R}}^{3,3}$$ R 3 , 3 , Advances in Applied Clifford Algebras, https://doi.org/10.1007/s00006-015-0625-y

Fradin, D., Meneveaux, D., Lienhardt, P.: Hierarchy of generalized maps for modeling and rendering complex indoor scenes, Tech. Rep., Rapport de recherche No 2005-04, Signal Image Communication laboratory, CNRS, University of Poitiers, France (November 2005)

Francés, V.M.S.: Modified version of MOKA implementing the GA method presented in this paper, https://github.com/vsotofrances/MOKACLIFFORD/tree/multivect . Accessed 07 May 2018

Franklin, W.R.: Polygon properties calculated from the vertex neighborhoods, in: N. ACM New York (Ed.), Proceeding SCG ’87, Proceedings of the third annual symposium on Computational geometry, (1987) ISBN:0-89791-231-4 https://doi.org/10.1145/41958.41969 https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/volume.html . Accessed 07 May 2018

Genera3D, automation of the 3D model creation of a building, http://vpclima2.ter.upv.es/ . Accessed 07 May 2018

Gunn, C.: Guide to Geometric Algebra in Practice. (Chapter: On the Homogeneous Model of Euclidean Geometry) Ed. Leo Dorst & Joan Lasenby,Springer-Verlag London Limited (2011), ISBN: 978-0-85729-810-2 https://doi.org/10.1007/978-0-85729-811-9

Gunn, C.: On the Homogeneous Model Of Euclidean Geometry. arXiv:1101.4542 [math.MG]. Accessed 07 May 2018

Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, D. Reidel Publishing Company, : ISBN-13: 978–9027725615. ISBN- 10, 9027725616 (1984)

Hestenes, D., Ziegler, R.: Projective geometry with clifford algebra. Acta Appl. Math. 23, 25–63 (1991)

Hitzer, E.: Introduction to Clifford’s geometric algebra. J. Soc. Instrum. Control Eng. 51(4), 338–350 (2012). arXiv:1306.1660 . Accessed 07 May 2018

HULC, Unified Tool LIDER-CALENER, Version 1.0.1493.1049. http://www.codigotecnico.org/index.php/menu-recursos/menu-aplicaciones/282-herramienta-unificada-lider-calener (2016). Accessed 01 July 2016

Kraemer, P., Untereiner, L., Jund, T., Thery, S., Cazier, D.: CGoGN:n-dimensional Meshes with Combinatorial Maps, J. Sarrate & M. Staten (eds.). In: Proceedings of the 22nd International Meshing Roundtable, Springer International Publishing Switzerland (2013) https://doi.org/10.1007/978-3-319-02335-9_27 https://github.com/cgogn/CGoGN . Accessed 07 May 2018

Li, H., Huang, L., Shao, C., Dong, L.: Three-Dimensional Projective Geometry with Geometric Algebra, (2015). arXiv:1507.06634v1

Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput. Aided Des. 23(1), 59–82 (1991). https://doi.org/10.1016/0010-4485(91)90082-8

Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275324 (1994). https://doi.org/10.1142/S0218195994000173

OFF 3D graphics data format. http://paulbourke.net/dataformats/ . Accessed 07 May 2018

Pappas, R.: Chapter: Oriented projective geometry with Clifford Algebra, in book titled, Clifford algebras with numeric and symbolic computations, Editors Rafal Ablamowicz, Pertti Lounesto, Josep M. Parra, Birkhäuser, (1996) ISBN: 978-1-4615-8159-8, ISBN 978-1-4615-8157-4 (eBook) https://doi.org/10.1007/978-1-4615-8157-4

Sokolov, A.: A key to projective model of homogeneous metric spaces, (2014) arXiv:1412.8095v1 [math.MG]

Sokolov, A.: Clifford algebra and the projective model of Elliptic spaces, (2013) arXiv:1310.2713v1 [math.MG]

Sokolov, A.: Clifford algebra and the projective model of homogeneous metric spaces: Foundations, (2013) arxiv:1307.2917v1 [math.MG]

Sokolov, A.: Clifford algebra and the projective model of Hyperbolic spaces (2016) arXiv:1602.08562v1 [math.MG]

Sokolov, A.: Clifford algebra and the projective model of Minkowski (pseudo-Euclidean) spaces (2013) arXiv:1307.4179v2 [math.MG]

Stein, P.: geoma v1.2.2007.08.20, C++ software, http://nklein.com/tags/geoma/ . Accessed 07 May 2018

Stolfi, J.: Oriented Projective Geometry. A Framework for Geometric Computations , 1st Edition ISBN 9781483265193 , Academic Press, Published 28th July 1991

Stolfi, J.: Primitives for computational geometry, Technical report SRC-RR-36, Systems research center (January 27 1989). http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-36.html . Accessed 07 May 2018

Tonti, E.: Why starting from differential equations for computational physics? J. Comput. Phys. 257, 1260–1290 (2014). https://doi.org/10.1016/j.jcp.2013.08.016

Vidil, F., Damiand, G., Dexet-Guiard, M., Guiard, N., Ledoux, F., Fousse, A., Fradin, D., Liang, Y., Meneveaux, D., Bertrand, Y.: MOKA. http://moka-modeller.sourceforge.net/ (2002). Accessed 07 May 2018

Zonnenberg, C.: Conformal Geometric Algebra Package, (2007), http://www.cs.uu.nl/groups/MG/gallery/CGAP/index.html . Accessed 07 May 2018

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record