- -

Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds

Show full item record

Sáez, C.; Garcia-Gomez, JM. (2018). Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds. International Journal of Medical Informatics. 119:109-124. https://doi.org/10.1016/j.ijmedinf.2018.09.015

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125106

Files in this item

Item Metadata

Title: Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Aim: The increasing availability of Big Biomedical Data is leading to large research data samples collected over long periods of time. We propose the analysis of the kinematics of data probability distributions over ...[+]
Subjects: Temporal stability , Data quality , Time series , Data reuse , Big data , Seasonality , Coordinate-free , Trajectories , Functional data analysis , Statistical manifolds
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
International Journal of Medical Informatics. (issn: 1386-5056 )
DOI: 10.1016/j.ijmedinf.2018.09.015
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.ijmedinf.2018.09.015
Project ID: info:eu-repo/grantAgreement/EC/H2020/727560/EU
Thanks:
This work was supported by UPV grant No. PAID-00-17, and projects DPI2016-80054-R and H2020-SC1-2016-CNECT No. 727560.
Type: Artículo

This item appears in the following Collection(s)

Show full item record