- -

Clasificación de imágenes de resonancia magnética cerebral mediante redes neuronales para el diagnóstico médico

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Clasificación de imágenes de resonancia magnética cerebral mediante redes neuronales para el diagnóstico médico

Show simple item record

Files in this item

dc.contributor.advisor Gómez Adrian, Jon Ander es_ES
dc.contributor.advisor De la Iglesia Vayá, Maria de los Desamparados es_ES
dc.contributor.author López Chilet, Álvaro es_ES
dc.date.accessioned 2019-09-10T11:40:35Z
dc.date.available 2019-09-10T11:40:35Z
dc.date.created 2019-07-10
dc.date.issued 2019-09-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125484
dc.description.abstract [ES] El problema que se aborda en este trabajo es el de usar técnicas de aprendizaje profundo para etiquetar imágenes de resonancia magnética cerebral en distintos grados de la enfermedad de Alzheimer: deterioro cognitivo leve, deterioro cognitivo medio, deterioro cognitivo grave y finalmente Alzheimer; además de detectar el caso de no enfermedad. Es importante detectar las primeras fases del deterioro cognitivo ya que el Alzheimer es una enfermedad sin cura por el momento y lo único que se puede hacer es diagnosticarla lo antes posible para poder disminuir al máximo su impacto a largo plazo mediante algunos tratamientos. Para ello, primero se estudiarán las herramientas y técnicas de preprocesado utilizadas actualmente para sacar el mayor partido a las imágenes. Seguidamente se revisarán los modelos y estrategias seguidos por el estado del arte. Para finalmente proponer algunas topologías de redes neuronales nuevas que aborden el problema desde un nuevo punto de vista. es_ES
dc.description.abstract [CA] El problema que s’aborda en este treball és el d’usar tècniques de aprenentatge profund per a etiquetar imatges de ressonància magnètica cerebral en distints graus de la malaltia d’Alzheimer: deteriorament cognitiu lleu, deteriorament cognitiu mig, deteriorament cognitiu greu i finalment Alzheimer; a més de detectar el cas de no malaltia. És important detectar les primeres fases del deteriorament cognitiu ja que l’Alzheimer és una malaltia sense cura de moment i l’única cosa que es pot fer és diagnosticar-la com més prompte millor per a poder disminuir al màxim el seu impacte a llarg termini per mitjà d’alguns tractaments. Per a això, primer s’estudiaran les ferramentes i tècniques de preprocessat utilitzades actualment per a traure el major partit a les imatges. A continuació es revisaran els models i estratègies seguits per l’estat de l’art. Per a finalment proposar algunes topologies de xarxes neuronals noves que aborden el problema des d’un nou punt de vista. es_ES
dc.description.abstract [EN] The problem addressed in this work is to use deep learning techniques to label brain magnetic resonance images in different degrees of Alzheimer’s disease: mild cognitive impairment, medium cognitive impairment, severe cognitive impairment and finally Alzheimer; besides detecting the case of no disease. It is important to detect the first phases of cognitive deterioration since Alzheimer is a disease without cure at the moment and the only thing that can be done is to diagnose it as soon as possible in order to minimize its long-term impact through some treatments. For this purpose, first, the preprocessing tools and techniques currently used will be studied to get the most out of the images. Then we will review the models and strategies followed by the state of the art. To finally propose some new neural network topologies that approach the problem from a new point of view. es_ES
dc.format.extent 51 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alzheimer es_ES
dc.subject Aprendizaje profundo es_ES
dc.subject Redes neuronales es_ES
dc.subject Resonancia magnética cerebral es_ES
dc.subject Deep learning es_ES
dc.subject Neural network es_ES
dc.subject Brain magnetic resonance es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.other Grado en Ingeniería Informática-Grau en Enginyeria Informàtica es_ES
dc.title Clasificación de imágenes de resonancia magnética cerebral mediante redes neuronales para el diagnóstico médico es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation López Chilet, Á. (2019). Clasificación de imágenes de resonancia magnética cerebral mediante redes neuronales para el diagnóstico médico. http://hdl.handle.net/10251/125484 es_ES
dc.description.accrualMethod TFGM es_ES
dc.relation.pasarela TFGM\109105 es_ES


This item appears in the following Collection(s)

Show simple item record