Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez, F.J. | es_ES |
dc.contributor.author | Yebra, L.J. | es_ES |
dc.contributor.author | Giménez, A. | es_ES |
dc.contributor.author | Torres-Moreno, J.L. | es_ES |
dc.date.accessioned | 2019-09-24T08:18:05Z | |
dc.date.available | 2019-09-24T08:18:05Z | |
dc.date.issued | 2019-09-20 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/126293 | |
dc.description.abstract | [EN] In this paper a dynamic model of a battery that lets simulate different types of batteries in light electric urban vehicles applications is proposed. The model is directly parameterizable from discharging experimental curves in test facilities. It properly fits to the particular behaviour observed in the charging/discharging curves in LiFePo 4 batteries. For the calibration of the proposed model experimental data from an experimental facility have been used and validation results are presented. The model is implemented in the object oriented modelling language Modelica reusing classes from the Modelica Standard Library. The calibration and the calibration has been performed with Dymola modelling tool. | es_ES |
dc.description.abstract | [ES] En este artículo se propone un modelo dinámico de batería que permite simular el comportamiento de distintos tipos de baterías para su aplicación en vehículos eléctricos urbanos ligeros. El modelo es fácilmente parametrizable a partir de las curvas de descarga experimentales del equipo real y se ajusta adecuadamente al comportamiento particular de la curva de carga/descarga de las baterías de Litio-Ferrofosfato (LiFePo4). Se han utilizado los datos obtenidos sobre una instalación experimental para la calibración del modelo propuesto y se presentan resultados de la validación del mismo. El modelo se ha implementado en el lenguaje de modelado orientado a objetos Modelica reutilizando clases de su librería estándar Modelica Standard Library. La calibración y validación se ha realizado con la herramienta de modelado Dymola. | es_ES |
dc.description.sponsorship | Al personal técnico del Grupo de Automática, Robótica y Mecatrónica de la Universidad de Almería (TEP-197) a cargo de la microrred experimental, por su inestimable ayuda en la obtención de los registros experimentales utilizados. El presente trabajo ha sido parcialmente financiado por el Proyecto DPI2017-85007-R del Plan Nacional R+D+i del Ministerio de Ciencia, Innovación y Universidades del Reino de España y por el Fondo Europeo de Desarrollo Regional (FEDER). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática. | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Lenguajes de simulación | es_ES |
dc.subject | Modelado de sistemas de eventos discretos e híbridos | es_ES |
dc.subject | Simulación de sistemas | es_ES |
dc.subject | Gestión energética y de almacenamiento de energía en vehículos | es_ES |
dc.subject | Identificación de sistemas y estimación de parámetros | es_ES |
dc.subject | Simulation languages | es_ES |
dc.subject | Discrete-event dynamic systems | es_ES |
dc.subject | Systems simulation | es_ES |
dc.subject | Storage and management of energy | es_ES |
dc.subject | System identification and Parameter estimation | es_ES |
dc.title | Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros | es_ES |
dc.title.alternative | Modelling of batteries for application in light electric urban vehicles | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-09-24T06:57:13Z | |
dc.identifier.doi | 10.4995/riai.2019.10609 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85007-R/ES/CONTROL Y GESTION OPTIMA DE RECURSOS HETEROGENEOS EN DISTRITOS PRODUCTIVOS AGROINDUSTRIALES INTEGRANDO ENERGIAS RENOVABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gómez, F.; Yebra, L.; Giménez, A.; Torres-Moreno, J. (2019). Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros. Revista Iberoamericana de Automática e Informática. 16(4):459-466. https://doi.org/10.4995/riai.2019.10609 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.10609 | es_ES |
dc.description.upvformatpinicio | 459 | es_ES |
dc.description.upvformatpfin | 466 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 4 | |
dc.identifier.eissn | 1697-7920 | |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B. | es_ES |
dc.description.references | Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep. | es_ES |
dc.description.references | Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211 | es_ES |
dc.description.references | Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J., Villarreal, I., 2016. State of health estimation algorithm of LiFePO4battery packs based on differential voltage curves for battery management system application. Energy 103, 784-796. https://doi.org/10.1016/j.energy.2016.02.163 | es_ES |
dc.description.references | Brondani, M. D. F., Sausen, A. T. Z. R., Sausen, P. S., Binelo, M. O., 2017. Battery Model Parameters Estimation Using Simulated Annealing. TEMA(Sao Carlos) 18 (1), 127. URL: https://tema.sbmac.org.br/tema/article/view/1003 https://doi.org/10.5540/tema.2017.018.01.0127 | es_ES |
dc.description.references | Dempsey, M., Gäfvert, M., Harman, P., Kral, C., Otter, M., Treffinger, P., 2006. Coordinated automotive libraries for vehicle system modelling. In: 5thModel. Conf. 2006. The Modelica Association, Vienna, Austria, pp. 33-41.URL: https://www.modelica.org/events/modelica2006/Proceedings/sessions/Session1b2.pdf | es_ES |
dc.description.references | Dizqah,A.M.,Busawon,K.,Fritzson,P.,2012.ACAUSALMODELINGAND SIMULATION OF THE STANDALONE SOLAR POWER SYSTEMS AS HYBRID DAEs. In: 53rd Int. Conf. Scand. Simul. Soc. pp. 1-7. | es_ES |
dc.description.references | Dymola - Dynamic Modeling Laboratory - User Manual, 2018. Dymola. URL: http://www.dymola.com | es_ES |
dc.description.references | Elmqvist, H., Olsson, H., Mattsson, S. E., Brück, D., Schweiger, C., Joos, D., Otter, M., 2005. Optimization for design and parameter estimation. In: In4th International Modelica Conference. | es_ES |
dc.description.references | Fritzson, P., 2015. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd Edition. Wiley. https://doi.org/10.1002/9781118989166 | es_ES |
dc.description.references | Gómez, F.J., Yebra, L.J., Giménez, A., 2018. Modelling a Smart-Grid for a Solar Powered Electric Vehicle. In: Technische Universität Wien (Ed.), 9th Vienna Conf. Math. Model. Vol. 55. ARGESIM Publisher, Vienna, Vienna,Austria, pp. 5-6. URL: https://www.asim-gi.org/fileadmin/user_upload_argesim/ARGESIM_Publications_OA/MATHMOD_Publications_OA/MATHMOD_2018_AR55/articles/a55113.arep.55.pdf DOI: 10.11128/arep.55.a55113. https://doi.org/10.11128/arep.55.a55113 | es_ES |
dc.description.references | Hausmann, A., Depcik, C., 2013. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Sources 235, 148-158. URL: https://www.sciencedirect.com/science/article/pii/S0378775313002322. https://doi.org/10.1016/j.jpowsour.2013.01.174 | es_ES |
dc.description.references | Kroeze, R. C., Krein, P. T., 2008. Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electron. Spec. Conf. IEEE, Rhodes, Greece, pp. 1336-1342. URL: http://ieeexplore.ieee.org/document/4592119/. https://doi.org/10.1109/PESC.2008.4592119 | es_ES |
dc.description.references | NREL, 2015. Technoeconomic Modeling of Battery Energy Storage in SAM. Tech. Rep.September.URL: http://www.nrel.gov/docs/fy15osti/64641.pdf | es_ES |
dc.description.references | Olsson, H., Mattsson, S. E., Hilding Elmqvist, 2006. Calibration of Static Models using Dymola. In: Proc. 5th Int. Model. Conf. The Modelica Association (http://www.modelica.org/) and Arsenal Research (http://www.arsenal.ac.at/), Vienna, Austria, pp. 615-620.URL: https://modelica.org/events/modelica2006/Proceedings/sessions/Session6a3.pdf | es_ES |
dc.description.references | Petzl, M., Danzer, M. A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans. Energy Convers. 28 (3), 675-681. https://doi.org/10.1109/TEC.2013.2259490 | es_ES |
dc.description.references | Seaman, A., Dao, T.-S., McPhee, J., jun 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410-423. URL: https://www.sciencedirect.com/science/article/pii/S0378775314000810. https://doi.org/10.1016/j.jpowsour.2014.01.057 | es_ES |
dc.description.references | Torres-Moreno, J. L., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with pv-battery systemsand electric vehicles. Energies 11 (3). URL: http://www.mdpi.com/1996-1073/11/3/522 DOI: 10.3390/en11030522. https://doi.org/10.3390/en11030522 | es_ES |
dc.description.references | Tremblay, O., Dessaint, L., 2009. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1-10. https://doi.org/10.3390/wevj3020289 | es_ES |
dc.description.references | TÜV SÜD Certification and Testing (China) Co. Ltd., 2016. Test Report IEC-62619A BYD B-Box. Tech. rep., TÜV SÜD Certification and Testing (China) Co. Ltd., Shenzhen (China). URL: https://www1.fenecon.de/web/content/34638 | es_ES |
dc.description.references | van Baten, J., 2017. ScanIt. URL: https://www.amsterchem.com/scanit.html | es_ES |
dc.description.references | Wang, W., Chung, H. S. H., Zhang, J., 2014. Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoCdependent capacitance. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 29 (11), 3977-3984. URL: https://ieeexplore.ieee.org/document/6714474. https://doi.org/10.1109/ECCE.2014.6953942 | es_ES |
dc.description.references | Zambrano Bigiarini, M., 2017. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. URL: http://hzambran.github.io/hydroGOF/ | es_ES |
dc.description.references | Zhang, W.-J., mar 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196 (6), 2962-2970. URL: https://www.sciencedirect.com/science/article/pii/S037877531002104X{#}bib0005. https://doi.org/10.1016/j.jpowsour.2010.11.113 | es_ES |