- -

The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liminana, Patricia es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.date.accessioned 2020-02-19T21:00:30Z
dc.date.available 2020-02-19T21:00:30Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137338
dc.description.abstract [EN] In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10-50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of these combined manufacturing processes for composites up to 50 wt % ASF. A vegetable oil-derived compatibilizer, maleinized linseed oil (MLO), was used in PBS/ASF composites with a constant ASF to MLO (wt/wt) ratio of 10.0:1.5. Mechanical properties of PBS/ASF/MLO composites were obtained by standard tensile, hardness, and impact tests. The morphology of these composites was studied by field emission scanning electron microscopy-FESEM) and the main thermal properties were obtained by differential scanning calorimetry (DSC), dynamical mechanical-thermal analysis (DMTA), thermomechanical analysis (TMA), and thermogravimetry (TGA). As the ASF loading increased, a decrease in maximum tensile strength could be detected due to the presence of ASF filler and a plasticization effect provided by MLO which also provided a compatibilization effect due to the interaction of succinic anhydride polar groups contained in MLO with hydroxyl groups in both PBS (hydroxyl terminal groups) and ASF (hydroxyl groups in cellulose). FESEM study reveals a positive contribution of MLO to embed ASF particles into the PBS matrix, thus leading to balanced mechanical properties. Varying ASF loading on PBS composites represents an environmentally-friendly solution to broaden PBS uses at the industrial level while the use of MLO contributes to overcome or minimize the lack of interaction between the hydrophobic PBS matrix and the highly hydrophilic ASF filler. es_ES
dc.description.sponsorship This research was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Green composites es_ES
dc.subject Natural fillers es_ES
dc.subject Poly(butylene succinate) (PBS) es_ES
dc.subject Almond shell flour (ASF) es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma11112179 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Liminana, P.; Quiles-Carrillo, L.; Boronat, T.; Balart, R.; Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials. 11(11):1-17. https://doi.org/10.3390/ma11112179 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma11112179 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.relation.pasarela S\371616 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002 es_ES
dc.description.references Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001 es_ES
dc.description.references Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002 es_ES
dc.description.references Eichhorn, S. J., & Gandini, A. (2010). Materials from Renewable Resources. MRS Bulletin, 35(3), 187-193. doi:10.1557/mrs2010.650 es_ES
dc.description.references Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 es_ES
dc.description.references Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567 es_ES
dc.description.references Kondratowicz, F. Ł., & Ukielski, R. (2009). Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability, 94(3), 375-382. doi:10.1016/j.polymdegradstab.2008.12.001 es_ES
dc.description.references Mochizuki, M., & Hirami, M. (1997). Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 8(4), 203-209. doi:10.1002/(sici)1099-1581(199704)8:4<203::aid-pat627>3.0.co;2-3 es_ES
dc.description.references Debuissy, T., Pollet, E., & Avérous, L. (2016). Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 99, 204-213. doi:10.1016/j.polymer.2016.07.022 es_ES
dc.description.references Patel, M. K., Bechu, A., Villegas, J. D., Bergez-Lacoste, M., Yeung, K., Murphy, R., … Bryant, D. (2018). Second-generation bio-based plastics are becoming a reality - Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 12(3), 426-441. doi:10.1002/bbb.1849 es_ES
dc.description.references Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. doi:10.1016/j.polymertesting.2018.02.003 es_ES
dc.description.references Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers, 10(3), 251. doi:10.3390/polym10030251 es_ES
dc.description.references Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer Degradation and Stability, 59(1-3), 209-214. doi:10.1016/s0141-3910(97)00220-6 es_ES
dc.description.references Číhal, P., Vopička, O., Pilnáček, K., Poustka, J., Friess, K., Hajšlová, J., … Dole, P. (2015). Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 46, 108-115. doi:10.1016/j.polymertesting.2015.07.006 es_ES
dc.description.references Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026 es_ES
dc.description.references Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. doi:10.1016/j.eurpolymj.2016.01.016 es_ES
dc.description.references Cheng, H.-H., Xiong, J., Xie, Z.-N., Zhu, Y.-T., Liu, Y.-M., Wu, Z.-Y., … Guo, Z.-X. (2017). Thrombin-Loaded Poly(butylene succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 303(2), 1700395. doi:10.1002/mame.201700395 es_ES
dc.description.references Costa-Pinto, A. R., Martins, A. M., Castelhano-Carlos, M. J., Correlo, V. M., Sol, P. C., Longatto-Filho, A., … Neves, N. M. (2014). In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 29(2), 137-151. doi:10.1177/0883911514521919 es_ES
dc.description.references Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579 es_ES
dc.description.references Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019 es_ES
dc.description.references Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014 es_ES
dc.description.references Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007 es_ES
dc.description.references Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. doi:10.1016/j.compositesb.2017.10.038 es_ES
dc.description.references Chun, K. S., Yeng, C. M., & Hussiensyah, S. (2016). Green coupling agent for agro-waste based thermoplastic composites. Polymer Composites, 39(7), 2441-2450. doi:10.1002/pc.24228 es_ES
dc.description.references Panthapulakkal, S., & Sain, M. (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. doi:10.1016/j.compositesa.2007.01.015 es_ES
dc.description.references Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. doi:10.1016/j.wasman.2016.04.037 es_ES
dc.description.references Feng, Y.-H., Li, Y.-J., Xu, B.-P., Zhang, D.-W., Qu, J.-P., & He, H.-Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Composites Part B: Engineering, 44(1), 193-199. doi:10.1016/j.compositesb.2012.05.051 es_ES
dc.description.references Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194 es_ES
dc.description.references Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2012). Mechanical, Thermal and Water Absorption Properties of Kenaf-Fiber-Based Polypropylene and Poly(Butylene Succinate) Composites. Journal of Polymers and the Environment, 21(1), 293-302. doi:10.1007/s10924-012-0516-4 es_ES
dc.description.references Tserki, V., Matzinos, P., & Panayiotou, C. (2006). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 37(9), 1231-1238. doi:10.1016/j.compositesa.2005.09.004 es_ES
dc.description.references Yen, F.-S., Liao, H.-T., & Wu, C.-S. (2012). Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 70(5), 1613-1629. doi:10.1007/s00289-012-0862-3 es_ES
dc.description.references El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6 es_ES
dc.description.references Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031 es_ES
dc.description.references García, A. M., García, A. I., Cabezas, M. Á. L., & Reche, A. S. (2015). Study of the Influence of the Almond Variety in the Properties of Injected Parts with Biodegradable Almond Shell Based Masterbatches. Waste and Biomass Valorization, 6(3), 363-370. doi:10.1007/s12649-015-9351-x es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011 es_ES
dc.description.references Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031 es_ES
dc.description.references Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. doi:10.1016/j.compositesb.2008.01.002 es_ES
dc.description.references Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., & Dorgan, J. R. (2010). Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 104(1), 331-338. doi:10.1007/s10973-010-1098-9 es_ES
dc.description.references Li, Y., Zhang, J., Cheng, P., Shi, J., Yao, L., & Qiu, Y. (2014). Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 61, 16-22. doi:10.1016/j.indcrop.2014.06.039 es_ES
dc.description.references Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering, 133, 210-217. doi:10.1016/j.compositesb.2017.09.030 es_ES
dc.description.references Shaniba, V., Sreejith, M. P., Aparna, K. B., Jinitha, T. V., & Purushothaman, E. (2017). Mechanical and thermal behavior of styrene butadiene rubber composites reinforced with silane-treated peanut shell powder. Polymer Bulletin, 74(10), 3977-3994. doi:10.1007/s00289-017-1931-4 es_ES
dc.description.references Phua, Y. J., Chow, W. S., & Mohd Ishak, Z. A. (2013). Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polymer Letters, 7(4), 340-354. doi:10.3144/expresspolymlett.2013.31 es_ES
dc.description.references Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. doi:10.1007/s13233-017-5025-9 es_ES
dc.description.references Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 es_ES
dc.description.references Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Industrial Crops and Products, 112, 170-180. doi:10.1016/j.indcrop.2017.11.011 es_ES
dc.description.references Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164 es_ES
dc.description.references Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5 es_ES
dc.description.references Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013 es_ES
dc.description.references Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539 es_ES
dc.description.references Ye, H.-M., Chen, X.-T., Liu, P., Wu, S.-Y., Jiang, Z., Xiong, B., & Xu, J. (2017). Preparation of Poly(butylene succinate) Crystals with Exceptionally High Melting Point and Crystallinity from Its Inclusion Complex. Macromolecules, 50(14), 5425-5433. doi:10.1021/acs.macromol.7b00656 es_ES
dc.description.references Ostafi, M.-F., Dinulică, F., & Nicolescu, V.-N. (2016). Physical properties and structural features of common walnut (Juglans regia L.) wood: A case-study / Physikalische Eigenschaften und strukturelle Charakteristika des Holzes der Walnuß (Juglans regia L.): Eine Fallstudie. Die Bodenkultur: Journal of Land Management, Food and Environment, 67(2), 105-120. doi:10.1515/boku-2016-0010 es_ES
dc.description.references Luís, R. C. G., Nisgoski, S., & Klitzke, R. J. (2018). Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood. Floresta e Ambiente, 25(1). doi:10.1590/2179-8087.101414 es_ES
dc.description.references Lopes, J. de O., Garcia, R. A., Latorraca, J. V. de F., & Nascimento, A. M. do. (2014). Alteração da cor da madeira de teca por tratamento térmico. Floresta e Ambiente, 21(4), 521-534. doi:10.1590/2179-8087.013612 es_ES
dc.description.references Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013 es_ES
dc.description.references Xu, X., Zhang, M., Qiang, Q., Song, J., & He, W. (2015). Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. Journal of Composite Materials, 50(7), 995-1003. doi:10.1177/0021998315615690 es_ES
dc.description.references Wu, C.-S., Hsu, Y.-C., Liao, H.-T., Yen, F.-S., Wang, C.-Y., & Hsu, C.-T. (2014). Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40730 es_ES
dc.description.references Saeed, U., Nawaz, M., & Al-Turaif, H. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641-2650. doi:10.1177/0021998317752227 es_ES
dc.description.references Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056 es_ES
dc.description.references Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. doi:10.3390/polym5010128 es_ES
dc.description.references Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013 es_ES
dc.description.references Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334 es_ES
dc.description.references Wang, G., Guo, B., Xu, J., & Li, R. (2011). Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. Journal of Applied Polymer Science, 121(1), 59-67. doi:10.1002/app.33222 es_ES
dc.description.references Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., & Lopez-Cuesta, J.-M. (2017). Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 29(1), 69-83. doi:10.1002/pat.4090 es_ES
dc.description.references Chen, G.-X., & Yoon, J.-S. (2005). Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polymer Degradation and Stability, 88(2), 206-212. doi:10.1016/j.polymdegradstab.2004.06.005 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Fuqua, M. A., Chevali, V. S., & Ulven, C. A. (2012). Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. Journal of Applied Polymer Science, 127(2), 862-868. doi:10.1002/app.37820 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem