Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno, A. | es_ES |
dc.contributor.author | Salgado, C. | es_ES |
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | Gutiérrez, J. P. | es_ES |
dc.contributor.author | Toro Ibáñez, M. A. | es_ES |
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.contributor.author | Nieto, B. | es_ES |
dc.date.accessioned | 2020-03-12T06:51:37Z | |
dc.date.available | 2020-03-12T06:51:37Z | |
dc.date.issued | 2011-08 | es_ES |
dc.identifier.issn | 0931-2668 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/138735 | |
dc.description.abstract | [EN] An experiment with mice was designed to test the relative efficiency of three selection methods that help to minimize the rate of inbreeding during selection. A common house mice (Mus musculus) population was selected for 17 generations to increase the weight gain between 21 and 42 days. The population was split at random into three lines A, B and C where three selection methods were applied: individual selection and random mating, weighted selection with random mating and individual selection with minimum coancestry mating, respectively. There were three replicates for each line. Cumulated selection response was similar in the three lines, but there were differences in the level of inbreeding attained (in percentage): 31.24 (method A), 24.72 (method B) and 27.88 (method C). As consequence, lines B and C (weighted selection and minimum coancestry) showed a lower value of deterioration of fitness traits (the intrauterine mortality and the mortality at birth) than line A (random mating). | es_ES |
dc.description.sponsorship | This paper was partially funded by a grant from the Spanish Government (AGL2008-00794). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Journal of Animal Breeding and Genetics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Inbreeding | es_ES |
dc.subject | Mice | es_ES |
dc.subject | Minimum coancestry | es_ES |
dc.subject | Selection | es_ES |
dc.subject | Weight gain | es_ES |
dc.subject | Weighted selection | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Restricting inbreeding while maintaining selection response for weight gain in Mus musculus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1439-0388.2011.00933.x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2008-00794/ES/SELECCION PARA EL CARACTER VARIABILIDAD DEL PESO AL NACIMIENTO EN MUS MUSCULUS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Moreno, A.; Salgado, C.; Piqueras, P.; Gutiérrez, JP.; Toro Ibáñez, MA.; Ibáñez-Escriche, N.; Nieto, B. (2011). Restricting inbreeding while maintaining selection response for weight gain in Mus musculus. Journal of Animal Breeding and Genetics. 128(4):276-283. https://doi.org/10.1111/j.1439-0388.2011.00933.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/j.1439-0388.2011.00933.x | es_ES |
dc.description.upvformatpinicio | 276 | es_ES |
dc.description.upvformatpfin | 283 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 128 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\392958 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Avendaño, S., Villanueva, B., & Woolliams, J. A. (2003). Expected increases in genetic merit from using optimized contributions in two livestock populations of beef cattle and sheep1. Journal of Animal Science, 81(12), 2964-2975. doi:10.2527/2003.81122964x | es_ES |
dc.description.references | Bijma, P., Van Arendonk, J. A., & Woolliams, J. A. (2001). Predicting rates of inbreeding for livestock improvement schemes. Journal of Animal Science, 79(4), 840. doi:10.2527/2001.794840x | es_ES |
dc.description.references | CABALLERO, A., & TORO, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research, 75(3), 331-343. doi:10.1017/s0016672399004449 | es_ES |
dc.description.references | Caballero, A., Santiago, E., & Toro, M. A. (1996). Systems of mating to reduce inbreeding in selected populations. Animal Science, 62(3), 431-442. doi:10.1017/s1357729800014971 | es_ES |
dc.description.references | Colleau, J. J., & Tribout, T. (2008). Optimized management of genetic variability in selected pig populations. Journal of Animal Breeding and Genetics, 125(5), 291-300. doi:10.1111/j.1439-0388.2008.00738.x | es_ES |
dc.description.references | Eisen, E. J., & Prasetyo, H. (1988). Estimates of Genetic Parameters and Predicted Selection Responses for Growth, Fat and Lean Traits in Mice. Journal of Animal Science, 66(5), 1153. doi:10.2527/jas1988.6651153x | es_ES |
dc.description.references | Falconer, D. S. (1953). Selection for large and small size in mice. Journal of Genetics, 51(3), 470-501. doi:10.1007/bf02982939 | es_ES |
dc.description.references | Fernandez, B. J., & Toro, M. A. (1999). The use of mathematical programming to control inbreeding in selection schemes. Journal of Animal Breeding and Genetics, 116(6), 447-466. doi:10.1046/j.1439-0388.1999.00196.x | es_ES |
dc.description.references | Gaskins, C. T., Snowder, G. D., Westman, M. K., & Evans, M. (2005). Influence of body weight, age, and weight gain on fertility and prolificacy in four breeds of ewe lambs1. Journal of Animal Science, 83(7), 1680-1689. doi:10.2527/2005.8371680x | es_ES |
dc.description.references | Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 | es_ES |
dc.description.references | GRUNDY, B., VILLANUEVA, B., & WOOLLIAMS, J. A. (1998). Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genetical Research, 72(2), 159-168. doi:10.1017/s0016672398003474 | es_ES |
dc.description.references | Hill W.G. 1986 Population size and design of breeding programmes | es_ES |
dc.description.references | Hill, W. G. (2011). Can more be learned from selection experiments of value in animal breeding programmes? Or is it time for an obituary? Journal of Animal Breeding and Genetics, 128(2), 87-94. doi:10.1111/j.1439-0388.2010.00913.x | es_ES |
dc.description.references | Hill, W. G., & Caballero, A. (1992). Artificial Selection Experiments. Annual Review of Ecology and Systematics, 23(1), 287-310. doi:10.1146/annurev.es.23.110192.001443 | es_ES |
dc.description.references | Kearney, J. F., Wall, E., Villanueva, B., & Coffey, M. P. (2004). Inbreeding Trends and Application of Optimized Selection in the UK Holstein Population. Journal of Dairy Science, 87(10), 3503-3509. doi:10.3168/jds.s0022-0302(04)73485-2 | es_ES |
dc.description.references | Malik, R. C. (1984). Genetic and Physiological Aspects of Growth, Body Composition and Feed Efficiency in Mice: A Review. Journal of Animal Science, 58(3), 577-590. doi:10.2527/jas1984.583577x | es_ES |
dc.description.references | Meuwissen, T. H. (1997). Maximizing the response of selection with a predefined rate of inbreeding. Journal of Animal Science, 75(4), 934. doi:10.2527/1997.754934x | es_ES |
dc.description.references | Nieto, B., Salgado, C., & Toro, M. A. (1986). Optimization of artificial selections response. Journal of Animal Breeding and Genetics, 103(1-5), 199-204. doi:10.1111/j.1439-0388.1986.tb00082.x | es_ES |
dc.description.references | Rios, J. G., Nielsen, M. K., & Dickerson, G. E. (1986). Selection for Postweaning Gain in Rats: II. Correlated Response in Reproductive Performance. Journal of Animal Science, 63(1), 46-53. doi:10.2527/jas1986.63146x | es_ES |
dc.description.references | Robertson, A. (1961). Inbreeding in artificial selection programmes. Genetical Research, 2(2), 189-194. doi:10.1017/s0016672300000690 | es_ES |
dc.description.references | Sonesson A.K. Woolliams J.A. Meuwissen T.H.E. 2010 Maximising genetic gain whilst controlling rates of genomic inbreeding using genomic optimum contribution selection | es_ES |
dc.description.references | Toro, M. A., & Nieto, B. M. (1984). A simple method for increasing the response to artificial selection. Genetical Research, 44(3), 347-349. doi:10.1017/s0016672300026574 | es_ES |
dc.description.references | Toro, M., & Pérez-Enciso, M. (1990). Optimization of selection response under restricted inbreeding. Genetics Selection Evolution, 22(1), 93. doi:10.1186/1297-9686-22-1-93 | es_ES |
dc.description.references | Toro, M. A., Nieto, B., & Salgado, C. (1988). A note on minimization of inbreeding in small-scale selection programmes. Livestock Production Science, 20(4), 317-323. doi:10.1016/0301-6226(88)90026-7 | es_ES |
dc.description.references | Toro, M. A., Silio, L., Rodrigañez, J., & Dobao, M. T. (1988). Inbreeding and family index selection for prolificacy in pigs. Animal Science, 46(1), 79-85. doi:10.1017/s0003356100003135 | es_ES |
dc.description.references | Villanueva B. Pong-Wong R. Woolliams J.A. Avendaño S. 2004 Managing genetic resources in selected and conserved populations BSAS Publications | es_ES |