- -

Restricting inbreeding while maintaining selection response for weight gain in Mus musculus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Restricting inbreeding while maintaining selection response for weight gain in Mus musculus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno, A. es_ES
dc.contributor.author Salgado, C. es_ES
dc.contributor.author Piqueras, P. es_ES
dc.contributor.author Gutiérrez, J. P. es_ES
dc.contributor.author Toro Ibáñez, M. A. es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author Nieto, B. es_ES
dc.date.accessioned 2020-03-12T06:51:37Z
dc.date.available 2020-03-12T06:51:37Z
dc.date.issued 2011-08 es_ES
dc.identifier.issn 0931-2668 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138735
dc.description.abstract [EN] An experiment with mice was designed to test the relative efficiency of three selection methods that help to minimize the rate of inbreeding during selection. A common house mice (Mus musculus) population was selected for 17 generations to increase the weight gain between 21 and 42 days. The population was split at random into three lines A, B and C where three selection methods were applied: individual selection and random mating, weighted selection with random mating and individual selection with minimum coancestry mating, respectively. There were three replicates for each line. Cumulated selection response was similar in the three lines, but there were differences in the level of inbreeding attained (in percentage): 31.24 (method A), 24.72 (method B) and 27.88 (method C). As consequence, lines B and C (weighted selection and minimum coancestry) showed a lower value of deterioration of fitness traits (the intrauterine mortality and the mortality at birth) than line A (random mating). es_ES
dc.description.sponsorship This paper was partially funded by a grant from the Spanish Government (AGL2008-00794). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of Animal Breeding and Genetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Inbreeding es_ES
dc.subject Mice es_ES
dc.subject Minimum coancestry es_ES
dc.subject Selection es_ES
dc.subject Weight gain es_ES
dc.subject Weighted selection es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Restricting inbreeding while maintaining selection response for weight gain in Mus musculus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1439-0388.2011.00933.x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-00794/ES/SELECCION PARA EL CARACTER VARIABILIDAD DEL PESO AL NACIMIENTO EN MUS MUSCULUS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Moreno, A.; Salgado, C.; Piqueras, P.; Gutiérrez, JP.; Toro Ibáñez, MA.; Ibáñez-Escriche, N.; Nieto, B. (2011). Restricting inbreeding while maintaining selection response for weight gain in Mus musculus. Journal of Animal Breeding and Genetics. 128(4):276-283. https://doi.org/10.1111/j.1439-0388.2011.00933.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/j.1439-0388.2011.00933.x es_ES
dc.description.upvformatpinicio 276 es_ES
dc.description.upvformatpfin 283 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 128 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\392958 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Avendaño, S., Villanueva, B., & Woolliams, J. A. (2003). Expected increases in genetic merit from using optimized contributions in two livestock populations of beef cattle and sheep1. Journal of Animal Science, 81(12), 2964-2975. doi:10.2527/2003.81122964x es_ES
dc.description.references Bijma, P., Van Arendonk, J. A., & Woolliams, J. A. (2001). Predicting rates of inbreeding for livestock improvement schemes. Journal of Animal Science, 79(4), 840. doi:10.2527/2001.794840x es_ES
dc.description.references CABALLERO, A., & TORO, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research, 75(3), 331-343. doi:10.1017/s0016672399004449 es_ES
dc.description.references Caballero, A., Santiago, E., & Toro, M. A. (1996). Systems of mating to reduce inbreeding in selected populations. Animal Science, 62(3), 431-442. doi:10.1017/s1357729800014971 es_ES
dc.description.references Colleau, J. J., & Tribout, T. (2008). Optimized management of genetic variability in selected pig populations. Journal of Animal Breeding and Genetics, 125(5), 291-300. doi:10.1111/j.1439-0388.2008.00738.x es_ES
dc.description.references Eisen, E. J., & Prasetyo, H. (1988). Estimates of Genetic Parameters and Predicted Selection Responses for Growth, Fat and Lean Traits in Mice. Journal of Animal Science, 66(5), 1153. doi:10.2527/jas1988.6651153x es_ES
dc.description.references Falconer, D. S. (1953). Selection for large and small size in mice. Journal of Genetics, 51(3), 470-501. doi:10.1007/bf02982939 es_ES
dc.description.references Fernandez, B. J., & Toro, M. A. (1999). The use of mathematical programming to control inbreeding in selection schemes. Journal of Animal Breeding and Genetics, 116(6), 447-466. doi:10.1046/j.1439-0388.1999.00196.x es_ES
dc.description.references Gaskins, C. T., Snowder, G. D., Westman, M. K., & Evans, M. (2005). Influence of body weight, age, and weight gain on fertility and prolificacy in four breeds of ewe lambs1. Journal of Animal Science, 83(7), 1680-1689. doi:10.2527/2005.8371680x es_ES
dc.description.references Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 es_ES
dc.description.references GRUNDY, B., VILLANUEVA, B., & WOOLLIAMS, J. A. (1998). Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genetical Research, 72(2), 159-168. doi:10.1017/s0016672398003474 es_ES
dc.description.references Hill W.G. 1986 Population size and design of breeding programmes es_ES
dc.description.references Hill, W. G. (2011). Can more be learned from selection experiments of value in animal breeding programmes? Or is it time for an obituary? Journal of Animal Breeding and Genetics, 128(2), 87-94. doi:10.1111/j.1439-0388.2010.00913.x es_ES
dc.description.references Hill, W. G., & Caballero, A. (1992). Artificial Selection Experiments. Annual Review of Ecology and Systematics, 23(1), 287-310. doi:10.1146/annurev.es.23.110192.001443 es_ES
dc.description.references Kearney, J. F., Wall, E., Villanueva, B., & Coffey, M. P. (2004). Inbreeding Trends and Application of Optimized Selection in the UK Holstein Population. Journal of Dairy Science, 87(10), 3503-3509. doi:10.3168/jds.s0022-0302(04)73485-2 es_ES
dc.description.references Malik, R. C. (1984). Genetic and Physiological Aspects of Growth, Body Composition and Feed Efficiency in Mice: A Review. Journal of Animal Science, 58(3), 577-590. doi:10.2527/jas1984.583577x es_ES
dc.description.references Meuwissen, T. H. (1997). Maximizing the response of selection with a predefined rate of inbreeding. Journal of Animal Science, 75(4), 934. doi:10.2527/1997.754934x es_ES
dc.description.references Nieto, B., Salgado, C., & Toro, M. A. (1986). Optimization of artificial selections response. Journal of Animal Breeding and Genetics, 103(1-5), 199-204. doi:10.1111/j.1439-0388.1986.tb00082.x es_ES
dc.description.references Rios, J. G., Nielsen, M. K., & Dickerson, G. E. (1986). Selection for Postweaning Gain in Rats: II. Correlated Response in Reproductive Performance. Journal of Animal Science, 63(1), 46-53. doi:10.2527/jas1986.63146x es_ES
dc.description.references Robertson, A. (1961). Inbreeding in artificial selection programmes. Genetical Research, 2(2), 189-194. doi:10.1017/s0016672300000690 es_ES
dc.description.references Sonesson A.K. Woolliams J.A. Meuwissen T.H.E. 2010 Maximising genetic gain whilst controlling rates of genomic inbreeding using genomic optimum contribution selection es_ES
dc.description.references Toro, M. A., & Nieto, B. M. (1984). A simple method for increasing the response to artificial selection. Genetical Research, 44(3), 347-349. doi:10.1017/s0016672300026574 es_ES
dc.description.references Toro, M., & Pérez-Enciso, M. (1990). Optimization of selection response under restricted inbreeding. Genetics Selection Evolution, 22(1), 93. doi:10.1186/1297-9686-22-1-93 es_ES
dc.description.references Toro, M. A., Nieto, B., & Salgado, C. (1988). A note on minimization of inbreeding in small-scale selection programmes. Livestock Production Science, 20(4), 317-323. doi:10.1016/0301-6226(88)90026-7 es_ES
dc.description.references Toro, M. A., Silio, L., Rodrigañez, J., & Dobao, M. T. (1988). Inbreeding and family index selection for prolificacy in pigs. Animal Science, 46(1), 79-85. doi:10.1017/s0003356100003135 es_ES
dc.description.references Villanueva B. Pong-Wong R. Woolliams J.A. Avendaño S. 2004 Managing genetic resources in selected and conserved populations BSAS Publications es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem