- -

Selection of Sustainable Short-Span Bridge Design in Brazil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selection of Sustainable Short-Span Bridge Design in Brazil

Mostrar el registro completo del ítem

Kripka, M.; Yepes, V.; Milani, CJ. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability. 11(5):1307-01-1307-12. https://doi.org/10.3390/su11051307

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138741

Ficheros en el ítem

Metadatos del ítem

Título: Selection of Sustainable Short-Span Bridge Design in Brazil
Autor: Kripka, Moacir Yepes, V. Milani, Cleovir José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Owing to the elevated cost of bridges, especially when compared to the cost of roads, their rational design and material selection are fundamental properties to consider when aiming to reduce the environmental impacts ...[+]
Palabras clave: Cost , Sustainability , Bridges , Design , Environmental impact , Decision making
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11051307
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11051307
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
The authors acknowledge the financial support of the Brazilian National Council for Scientific and Technological Development (CNPq) to the first author, the financial support of the Spanish Ministry of Economy and ...[+]
Tipo: Artículo

References

Fonte, T. F. da, & Calil Júnior, C. (2007). Pontes protendidas de madeira: alternativa técnico-econômica para vias rurais. Engenharia Agrícola, 27(2), 552-559. doi:10.1590/s0100-69162007000300026

Economical Short Span Concrete Bridges https://www.concreteconstruction.net/how-to/construction/economical-short-span-concrete-bridges_o

Vladimir, M., & Mihai, V. (2016). Economical Solutions for Short-span Bridges Using Reinforced Glue Laminated Timber and Steel. Procedia Engineering, 156, 227-232. doi:10.1016/j.proeng.2016.08.291 [+]
Fonte, T. F. da, & Calil Júnior, C. (2007). Pontes protendidas de madeira: alternativa técnico-econômica para vias rurais. Engenharia Agrícola, 27(2), 552-559. doi:10.1590/s0100-69162007000300026

Economical Short Span Concrete Bridges https://www.concreteconstruction.net/how-to/construction/economical-short-span-concrete-bridges_o

Vladimir, M., & Mihai, V. (2016). Economical Solutions for Short-span Bridges Using Reinforced Glue Laminated Timber and Steel. Procedia Engineering, 156, 227-232. doi:10.1016/j.proeng.2016.08.291

García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177

Yepes, V., Martí, J. V., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123-134. doi:10.1016/j.autcon.2014.10.013

García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012

Ardeshir, A., Mohseni, N., Behzadian, K., & Errington, M. (2014). Selection of a Bridge Construction Site Using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405-4420. doi:10.1007/s13369-014-1070-2

García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007

Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685

Allah Bukhsh, Z., Stipanovic, I., Klanker, G., O’ Connor, A., & Doree, A. G. (2018). Network level bridges maintenance planning using Multi-Attribute Utility Theory. Structure and Infrastructure Engineering, 15(7), 872-885. doi:10.1080/15732479.2017.1414858

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295

Zavadskas, E., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability, 10(2), 14. doi:10.3390/su10010014

Du, G., & Karoumi, R. (2012). Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering, 10(3), 277-294. doi:10.1080/15732479.2012.749289

Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325

Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328

Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. doi:10.1504/ijssci.2008.017590

Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092

Manual de projeto e construção de pontes de madeira http://www.usp.br/agen/wp-content/uploads/Manual-de-Pontes-de-Madeira.pdf

Santoro, J. F., & Kripka, M. (2017). Studies on Environmental Impact Assessment of Reinforced Concrete in Different Life Cycle Phases. International Journal of Structural Glass and Advanced Materials Research, 1(2), 32-40. doi:10.3844/sgamrsp.2017.32.40

Zuo, J., Pullen, S., Rameezdeen, R., Bennetts, H., Wang, Y., Mao, G., … Duan, H. (2017). Green building evaluation from a life-cycle perspective in Australia: A critical review. Renewable and Sustainable Energy Reviews, 70, 358-368. doi:10.1016/j.rser.2016.11.251

Mahnert, K.-C., & Hundhausen, U. (2017). A review on the protection of timber bridges. Wood Material Science & Engineering, 13(3), 152-158. doi:10.1080/17480272.2017.1403955

Concrete CO2 Fact Sheet www.nrmca.org/greenconcrete/concrete%20co2%20fact%20sheet%20june%202008.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem