- -

Thermal, Pressure and Light Induced Spin Transition in the Two-Dimensional Coordination Polymer [Fe(pmd)2[Cu(CN)2]2]

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal, Pressure and Light Induced Spin Transition in the Two-Dimensional Coordination Polymer [Fe(pmd)2[Cu(CN)2]2]

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agustí, G. es_ES
dc.contributor.author Thompson, A. L. es_ES
dc.contributor.author Gaspar, A. B. es_ES
dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Goeta, A. E. es_ES
dc.contributor.author Rodríguez-Velamazán, J. A. es_ES
dc.contributor.author Castro, M. es_ES
dc.contributor.author Burriel, R. es_ES
dc.contributor.author Real, J. A. es_ES
dc.date.accessioned 2020-03-16T14:47:00Z
dc.date.available 2020-03-16T14:47:00Z
dc.date.issued 2008-02-07 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138970
dc.description.abstract [EN] A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer {Fe(pmd)(2)[Cu(CN)(2)](2)} is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light ( lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 angstrom(3) which is lower than the usually observed value of around 25-30 angstrom(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 angstrom. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, Delta S = 35-37 J mol(-1) K-1 lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation. es_ES
dc.description.sponsorship Financial support is acknowledged from the Spanish MEC (CTQ 2004-03456 and MAT2004-03395-C02-02), the Generalitat Valenciana (research grant ACOMP/2007/110) and MAGMANet Network of Excellence of the European Union (Contract NMP3-CT-2005-515767-2). A.B.G. thanks the Spanish MEC for a research contract (Programa Ramón y Cajal). A.L.T thanks EPSRC for a post-graduate studentship. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Thermal, Pressure and Light Induced Spin Transition in the Two-Dimensional Coordination Polymer [Fe(pmd)2[Cu(CN)2]2] es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/b711834a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2004-03456/ES/TRANSICION DE ESPIN EN MATERIALES MAGNETICOS FUNCIONALES DE BASE MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/515767/EU/Molecular approach to nanomagnets and multifunctional materials/MAGMANET/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2004-03395-C02-02/ES/ESTUDIO TERMOMAGNETICO DE MATERIALES MULTIFUNCIONALES: MAGNETISMO MOLECULAR, FOTOMAGNETISMO Y EFECTO MAGNETOCALORICO GIGANTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2007%2F110/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Agustí, G.; Thompson, AL.; Gaspar, AB.; Muñoz Roca, MDC.; Goeta, AE.; Rodríguez-Velamazán, JA.; Castro, M.... (2008). Thermal, Pressure and Light Induced Spin Transition in the Two-Dimensional Coordination Polymer [Fe(pmd)2[Cu(CN)2]2]. Dalton Transactions. (5):642-649. https://doi.org/10.1039/b711834a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/b711834a es_ES
dc.description.upvformatpinicio 642 es_ES
dc.description.upvformatpfin 649 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\230630 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.description.references Goodwin, H. A. (1976). Spin Transitions in six-coordinate iron(II) complexes. Coordination Chemistry Reviews, 18(3), 293-325. doi:10.1016/s0010-8545(00)80430-0 es_ES
dc.description.references Gütlich, P. (s. f.). Spin crossover in iron(II)-complexes. Metal Complexes, 83-195. doi:10.1007/bfb0111269 es_ES
dc.description.references Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c es_ES
dc.description.references Bousseksou, A., Varret, F., Goiran, M., Boukheddaden, K., & Tuchagues, J. P. (2004). The Spin Crossover Phenomenon Under High Magnetic Field. Spin Crossover in Transition Metal Compounds III, 65-84. doi:10.1007/b95422 es_ES
dc.description.references Hauser, A. (s. f.). Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. Spin Crossover in Transition Metal Compounds II, 155-198. doi:10.1007/b95416 es_ES
dc.description.references Halder, G. J. (2002). Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 298(5599), 1762-1765. doi:10.1126/science.1075948 es_ES
dc.description.references Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 es_ES
dc.description.references Guionneau, P., Marchivie, M., Bravic, G., Létard, J.-F., & Chasseau, D. (s. f.). Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes. Spin Crossover in Transition Metal Compounds II, 97-128. doi:10.1007/b95414 es_ES
dc.description.references Hostettler, M., Törnroos, K. W., Chernyshov, D., Vangdal, B., & Bürgi, H.-B. (2004). Challenges in Engineering Spin Crossover: Structures and Magnetic Properties of Six Alcohol Solvates of Iron(II) Tris(2-picolylamine) Dichloride. Angewandte Chemie International Edition, 43(35), 4589-4594. doi:10.1002/anie.200460736 es_ES
dc.description.references T. Iwamoto , Inclusion Compounds, ed. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Oxford University Press, London, UK, 1991, vol. 5, 177 es_ES
dc.description.references Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A., & Enoki, T. (1996). Spin-crossover behaviour of the coordination polymer FeII(C5H5N)2NiII(CN)4. Journal of Materials Chemistry, 6(1), 119. doi:10.1039/jm9960600119 es_ES
dc.description.references Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y es_ES
dc.description.references Bonhommeau, S., Molnár, G., Galet, A., Zwick, A., Real, J.-A., McGarvey, J. J., & Bousseksou, A. (2005). One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature. Angewandte Chemie International Edition, 44(26), 4069-4073. doi:10.1002/anie.200500717 es_ES
dc.description.references Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie International Edition, 45(35), 5786-5789. doi:10.1002/anie.200601885 es_ES
dc.description.references Niel, V., Galet, A., Gaspar, A. B., Muñoz, M. C., & Real, J. A. (2003). Cooperative thermal and optical switching of spin states in a new two-dimensional coordination polymer. Chem. Commun., (11), 1248-1249. doi:10.1039/b301806g es_ES
dc.description.references Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853 es_ES
dc.description.references Galet, A., Niel, V., Muñoz, M. C., & Real, J. A. (2003). Synergy between Spin Crossover and Metallophilicity in Triple Interpenetrated 3D Nets with the NbO Structure Type. Journal of the American Chemical Society, 125(47), 14224-14225. doi:10.1021/ja0377347 es_ES
dc.description.references Galet, A., Muñoz, M. C., Martínez, V., & Real, J. A. (2004). Supramolecular isomerism in spin crossover networks with aurophilic interactions. Chem. Commun., (20), 2268-2269. doi:10.1039/b409974e es_ES
dc.description.references Niel, V., Thompson, A. L., Goeta, A. E., Enachescu, C., Hauser, A., Galet, A., … Real, J. A. (2005). Thermal- and Photoinduced Spin-State Switching in an Unprecedented Three-Dimensional Bimetallic Coordination Polymer. Chemistry - A European Journal, 11(7), 2047-2060. doi:10.1002/chem.200400930 es_ES
dc.description.references Galet, A., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G., & Real, J. A. (2005). Tunable Bistability in a Three-Dimensional Spin-Crossover Sensory- and Memory-Functional Material. Advanced Materials, 17(24), 2949-2953. doi:10.1002/adma.200501122 es_ES
dc.description.references Galet, A., Muñoz, M. C., & Real, J. A. (2006). {Fe(3CNpy)2[Cu(3CNpy)(μ-CN)2]2}:  a One-Dimensional Cyanide-Based Spin-Crossover Coordination Polymer. Inorganic Chemistry, 45(12), 4583-4585. doi:10.1021/ic060247i es_ES
dc.description.references García, J., Bartolomé, J., Goṅzález, D., Navarro, R., & Fruchart, D. (1983). Thermophysical properties of intermetallic Mn3MC perovskites I. Heat capacity of manganese gallium carbide Mn3GaC. The Journal of Chemical Thermodynamics, 15(11), 1059-1069. doi:10.1016/0021-9614(83)90031-9 es_ES
dc.description.references Létard, J.-F., Guionneau, P., & Goux-Capes, L. (s. f.). Towards Spin Crossover Applications. Spin Crossover in Transition Metal Compounds III, 221-249. doi:10.1007/b95429 es_ES
dc.description.references Létard, J.-F., Capes, L., Chastanet, G., Moliner, N., Létard, S., Real, J.-A., & Kahn, O. (1999). Critical temperature of the LIESST effect in iron(II) spin crossover compounds. Chemical Physics Letters, 313(1-2), 115-120. doi:10.1016/s0009-2614(99)01036-2 es_ES
dc.description.references Baran, M., Dyakonov, V., Gładczuk, L., Levchenko, G., Piechota, S., & Szymczak, H. (1995). Comparative study of the pressure effect on critical parameters of GdBa2Cu4O8 and YBa2Cu4O8. Physica C: Superconductivity, 241(3-4), 383-388. doi:10.1016/0921-4534(94)02359-x es_ES
dc.description.references Carvajal, M. A., Alvarez, S., & Novoa, J. J. (2004). The Nature of Intermolecular CuI⋅⋅⋅CuI Interactions: A Combined Theoretical and Structural Database Analysis. Chemistry - A European Journal, 10(9), 2117-2132. doi:10.1002/chem.200305249 es_ES
dc.description.references Rodrı´guez-Velamazán, J. A., Castro, M., Palacios, E., Burriel, R., Sánchez Costa, J., & Létard, J. F. (2007). Calorimetric measurements of the light-induced metastable high-spin state on the [Fe(PM-BiA)2(NCS)2] complex. Chemical Physics Letters, 435(4-6), 358-363. doi:10.1016/j.cplett.2006.12.097 es_ES
dc.description.references GUTLICH, P., KSENOFONTOV, V., & GASPAR, A. (2005). Pressure effect studies on spin crossover systems. Coordination Chemistry Reviews, 249(17-18), 1811-1829. doi:10.1016/j.ccr.2005.01.022 es_ES
dc.description.references Ksenofontov, V., Gaspar, A. B., & Gütlich, P. (s. f.). Pressure Effect Studies on Spin Crossover and Valence Tautomeric Systems. Spin Crossover in Transition Metal Compounds III, 23-64. doi:10.1007/b95421 es_ES
dc.description.references Usha, S., Srinivasan, R., & Rao, C. N. R. (1985). High-pressure magnetic susceptibility studies of spin-state transition in Fe(II) complexes. Chemical Physics, 100(3), 447-455. doi:10.1016/0301-0104(85)87069-5 es_ES
dc.description.references Köhler, C. P., Jakobi, R., Meissner, E., Wiehl, L., Spiering, H., & Gütlich, P. (1990). Nature of the phase transition in spin crossover compounds. Journal of Physics and Chemistry of Solids, 51(3), 239-247. doi:10.1016/0022-3697(90)90052-h es_ES
dc.description.references Romstedt, H., Hauser, A., & Spiering, H. (1998). High-spin → low-spin relaxation in the two-step spincrossover compound [Fe(pic)3]Cl2EtOH (pic = 2-picolylamine). Journal of Physics and Chemistry of Solids, 59(2), 265-275. doi:10.1016/s0022-3697(97)00142-x es_ES
dc.description.references Adler, P., Wiehl, L., Meibner, E., Köhler, C. P., Spiering, H., & Gütlich, P. (1987). The influence of the lattice on the spin transition in solids. Investigations of the high spin ag low spin transition in mixed crystals of [FexM1−x(2−pic)3]C12·MeOH. Journal of Physics and Chemistry of Solids, 48(6), 517-525. doi:10.1016/0022-3697(87)90046-1 es_ES
dc.description.references Ksenofontov, V., Spiering, H., Schreiner, A., Levchenko, G., Goodwin, H. ., & Gütlich, P. (1999). The influence of hydrostatic pressure on hysteresis phase transition in spin crossover compounds. Journal of Physics and Chemistry of Solids, 60(3), 393-399. doi:10.1016/s0022-3697(98)00259-5 es_ES
dc.description.references Galet, A., Gaspar, A. B., Agusti, G., Muñoz, M. C., Levchenko, G., & Real, J. A. (2006). Pressure Effect Investigations on the Spin Crossover Systems{Fe[H2B(pz)2]2(bipy)} and {Fe[H2B(pz)2]2(phen)}. European Journal of Inorganic Chemistry, 2006(18), 3571-3573. doi:10.1002/ejic.200600517 es_ES
dc.description.references Galet, A., Gaspar, A. B., Muñoz, M. C., Levchenko, G., & Real, J. A. (2006). Pressure Effect and Crystal Structure Reinvestigations on the Spin Crossover System:  [Fe(bt)2(NCS)2] (bt = 2,2‘-Bithiazoline) PolymorphsAandB. Inorganic Chemistry, 45(24), 9670-9679. doi:10.1021/ic060729u es_ES
dc.description.references Gallois, B., Real, J. A., Hauw, C., & Zarembowitch, J. (1990). Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a single-crystal x-ray investigation. Inorganic Chemistry, 29(6), 1152-1158. doi:10.1021/ic00331a009 es_ES
dc.description.references Guionneau, P., Marchivie, M., Garcia, Y., Howard, J. A. K., & Chasseau, D. (2005). Spin crossover in[MnIII(pyrol)3tren]probed by high-pressure and low-temperature x-ray diffraction. Physical Review B, 72(21). doi:10.1103/physrevb.72.214408 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem