- -

Efficient time integration methods for Gross-Pitaevskii equations with rotation term

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Efficient time integration methods for Gross-Pitaevskii equations with rotation term

Show simple item record

Files in this item

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Thalhammer, Mechthild es_ES
dc.date.accessioned 2020-03-26T06:39:39Z
dc.date.available 2020-03-26T06:39:39Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139464
dc.description.abstract [EN] The objective of this work is the introduction and investigation of favourable time integration methods for the Gross-Pitaevskii equation with rotation term. Employing a reformulation in rotating Lagrangian coordinates, the equation takes the form of a nonlinear Schrödinger equation involving a space-time-dependent potential. A natural approach that combines commutator-free quasi-Magnus exponential integrators with operator splitting methods and Fourier spectral space discretisations is proposed. Furthermore, the special structure of the Hamilton operator permits the design of specifically tailored schemes. Numerical experiments confirm the good performance of the resulting exponential integrators. es_ES
dc.description.sponsorship Part of this work was developed during a research stay at the Wolfgang Pauli Institute Vienna; the authors are grateful to the director Norbert Mauser and the staff members for their support and hospitality. Philipp Bader, Sergio Blanes, and Fernando Casas acknowledge funding by the Ministerio de Economía y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof Journal of Computational Dynamics (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear Schrödinger equations es_ES
dc.subject Gross-Pitaevskii equations es_ES
dc.subject Exponential integrators es_ES
dc.subject Magnus integrators es_ES
dc.subject Commutator-free quasi-Magnus integrators es_ES
dc.subject Spectral methods es_ES
dc.subject Fast Fourier transform es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Efficient time integration methods for Gross-Pitaevskii equations with rotation term es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/jcd.2019008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F.; Thalhammer, M. (2019). Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics (Online). 6(2):147-169. https://doi.org/10.3934/jcd.2019008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/jcd.2019008 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 169 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2158-2505 es_ES
dc.relation.pasarela S\403084 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


This item appears in the following Collection(s)

Show simple item record