Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet-Sanz, Marc | es_ES |
dc.date.accessioned | 2020-03-27T07:05:13Z | |
dc.date.available | 2020-03-27T07:05:13Z | |
dc.date.issued | 2019-07-16 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139661 | |
dc.description.abstract | [EN] Solving a random differential equation means to obtain an exact or approximate expression for the solution stochastic process, and to compute its statistical properties, mainly the mean and the variance functions. However, a major challenge is the computation of the probability density function of the solution. In this article we construct reliable approximations of the probability density function to the randomized non-autonomous complete linear differential equation by assuming that the diffusion coefficient and the source term are stochastic processes and the initial condition is a random variable. The key tools to construct these approximations are the random variable transformation technique and Karhunen-Loeve expansions. The study is divided into a large number of cases with a double aim: firstly, to extend the available results in the extant literature and, secondly, to embrace as many practical situations as possible. Finally, a wide variety of numerical experiments illustrate the potentiality of our findings. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Texas State University. Department of Mathematics | es_ES |
dc.relation.ispartof | Electronic Journal of Differential Equations | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions. Electronic Journal of Differential Equations. 2019:1-40. http://hdl.handle.net/10251/139661 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://ejde.math.txstate.edu/ | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 40 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2019 | es_ES |
dc.identifier.eissn | 1072-6691 | es_ES |
dc.relation.pasarela | S\391416 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |