- -

Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-03-27T07:05:13Z
dc.date.available 2020-03-27T07:05:13Z
dc.date.issued 2019-07-16 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139661
dc.description.abstract [EN] Solving a random differential equation means to obtain an exact or approximate expression for the solution stochastic process, and to compute its statistical properties, mainly the mean and the variance functions. However, a major challenge is the computation of the probability density function of the solution. In this article we construct reliable approximations of the probability density function to the randomized non-autonomous complete linear differential equation by assuming that the diffusion coefficient and the source term are stochastic processes and the initial condition is a random variable. The key tools to construct these approximations are the random variable transformation technique and Karhunen-Loeve expansions. The study is divided into a large number of cases with a double aim: firstly, to extend the available results in the extant literature and, secondly, to embrace as many practical situations as possible. Finally, a wide variety of numerical experiments illustrate the potentiality of our findings. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher Texas State University. Department of Mathematics es_ES
dc.relation.ispartof Electronic Journal of Differential Equations es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions. Electronic Journal of Differential Equations. 2019:1-40. http://hdl.handle.net/10251/139661 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://ejde.math.txstate.edu/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 40 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.identifier.eissn 1072-6691 es_ES
dc.relation.pasarela S\391416 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem