- -

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Perez, Paula es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-04-06T08:55:44Z
dc.date.available 2020-04-06T08:55:44Z
dc.date.issued 2019-03-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140187
dc.description.abstract [EN] Porous materials have become one of the best options for the development of optical sensors, since they maximize the interaction between the optical field and the target substances, which boosts the sensitivity. In this work, we propose the use of a readily available mesoporous material for the development of such sensors: commercial polycarbonate track-etched membranes. In order to demonstrate their utility for this purpose, we firstly characterized their optical response in the near-infrared range. This response is an interference fringe pattern, characteristic of a Fabry¿Pérot interferometer, which is an optical device typically used for sensing purposes. Afterwards, several refractive index sensing experiments were performed by placing different concentrations of ethanol solution on the polycarbonate track-etched membranes. As a result, a sensitivity value of around 56 nm/RIU was obtained and the reusability of the substrate was demonstrated. These results pave the way for the development of optical porous sensors with such easily available mesoporous material. es_ES
dc.description.sponsorship This research was funded by the Spanish Government through grant TEC2015-63838-C3-1-R-OPTONANOSENS and the Universitat Politecnica de Valencia through grants PAID-01-17. es_ES
dc.language Inglés es_ES
dc.publisher Beilstein-Institut es_ES
dc.relation.ispartof Beilstein Journal of Nanotechnology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chemical sensor es_ES
dc.subject Fabry-Perot interferometer es_ES
dc.subject Optical sensor es_ES
dc.subject Polycarbonate es_ES
dc.subject Track-etched membrane es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3762/bjnano.10.67 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Martinez-Perez, P.; García-Rupérez, J. (2019). Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors. Beilstein Journal of Nanotechnology. 10:677-683. https://doi.org/10.3762/bjnano.10.67 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3762/bjnano.10.67 es_ES
dc.description.upvformatpinicio 677 es_ES
dc.description.upvformatpfin 683 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2190-4286 es_ES
dc.relation.pasarela S\380357 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030 es_ES
dc.description.references Caroselli, R., Martín Sánchez, D., Ponce Alcántara, S., Prats Quilez, F., Torrijos Morán, L., & García-Rupérez, J. (2017). Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors, 17(12), 2813. doi:10.3390/s17122813 es_ES
dc.description.references Prabowo, B., Purwidyantri, A., & Liu, K.-C. (2018). Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors, 8(3), 80. doi:10.3390/bios8030080 es_ES
dc.description.references Levitsky, I. (2015). Porous Silicon Structures as Optical Gas Sensors. Sensors, 15(8), 19968-19991. doi:10.3390/s150819968 es_ES
dc.description.references Ponce-Alcántara, S., Martín-Sánchez, D., Pérez-Márquez, A., Maudes, J., Murillo, N., & García-Rupérez, J. (2018). Optical sensors based on polymeric nanofibers layers created by electrospinning. Optical Materials Express, 8(10), 3163. doi:10.1364/ome.8.003163 es_ES
dc.description.references Qiu, H.-J., Li, X., Xu, H.-T., Zhang, H.-J., & Wang, Y. (2014). Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C, 2(46), 9788-9799. doi:10.1039/c4tc01913j es_ES
dc.description.references Shindell, O., Mica, N., Ritzer, M., & Gordon, V. D. (2015). Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins. Physical Chemistry Chemical Physics, 17(24), 15598-15607. doi:10.1039/c4cp05877a es_ES
dc.description.references Párraga-Niño, N., Quero, S., Ventós-Alfonso, A., Uria, N., Castillo-Fernandez, O., Ezenarro, J. J., … Sabrià, M. (2018). New system for the detection of Legionella pneumophila in water samples. Talanta, 189, 324-331. doi:10.1016/j.talanta.2018.07.013 es_ES
dc.description.references Martín-Sánchez, D., Ponce-Alcántara, S., Martínez-Pérez, P., & García-Rupérez, J. (2019). Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon. Journal of The Electrochemical Society, 166(2), B9-B12. doi:10.1149/2.0051902jes es_ES
dc.description.references Wilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., & Durkin, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20(3), 030901. doi:10.1117/1.jbo.20.3.030901 es_ES
dc.description.references Aran, K., Sasso, L. A., Kamdar, N., & Zahn, J. D. (2010). Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab on a Chip, 10(5), 548. doi:10.1039/b924816a es_ES
dc.description.references García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276 es_ES
dc.description.references Sani, E., & Dell’Oro, A. (2016). Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Optical Materials, 60, 137-141. doi:10.1016/j.optmat.2016.06.041 es_ES
dc.description.references Ooi, C. H., Bormashenko, E., Nguyen, A. V., Evans, G. M., Dao, D. V., & Nguyen, N.-T. (2016). Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles. Langmuir, 32(24), 6097-6104. doi:10.1021/acs.langmuir.6b01272 es_ES
dc.description.references Ogończyk, D., Jankowski, P., & Garstecki, P. (2012). Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors. Lab on a Chip, 12(15), 2743. doi:10.1039/c2lc40204a es_ES
dc.description.references Kosobrodova, E., Jones, R. T., Kondyurin, A., Chrzanowski, W., Pigram, P. J., McKenzie, D. R., & Bilek, M. M. M. (2015). Orientation and conformation of anti-CD34 antibody immobilised on untreated and plasma treated polycarbonate. Acta Biomaterialia, 19, 128-137. doi:10.1016/j.actbio.2015.02.027 es_ES
dc.description.references Godeau, G., Amigoni, S., Darmanin, T., & Guittard, F. (2016). Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Applied Surface Science, 387, 28-35. doi:10.1016/j.apsusc.2016.06.053 es_ES
dc.description.references Sultanova, N. G., Kasarova, S. N., & Nikolov, I. D. (2012). Characterization of optical properties of optical polymers. Optical and Quantum Electronics, 45(3), 221-232. doi:10.1007/s11082-012-9616-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem