- -

Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction

Mostrar el registro completo del ítem

Espinosa-López, JC.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2016). Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction. Catalysis Science & Technology. 6(19):7077-7085. https://doi.org/10.1039/c6cy00572a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140192

Ficheros en el ítem

Metadatos del ítem

Título: Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction
Autor: Espinosa-López, Juan Carlos Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A series of catalysts consisting of Cu nanoparticles (NPs) supported on diamond nanoparticles (D) were obtained by polyol reduction of CuNO3)(2) in the presence of D. The best performing Cu/D catalyst was obtained ...[+]
Derechos de uso: Cerrado
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c6cy00572a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c6cy00572a
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/
info:eu-repo/grantAgreement/MINECO//CTQ2014-53292-R/ES/MATERIALES GRAFENICOS COMO CATALIZADORES PARA REACCIONES ORGANICAS./
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-69153-C2-1-R and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2013/014).[+]
Tipo: Artículo

References

Ayoub, K., van Hullebusch, E. D., Cassir, M., & Bermond, A. (2010). Application of advanced oxidation processes for TNT removal: A review. Journal of Hazardous Materials, 178(1-3), 10-28. doi:10.1016/j.jhazmat.2010.02.042

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039

Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018 [+]
Ayoub, K., van Hullebusch, E. D., Cassir, M., & Bermond, A. (2010). Application of advanced oxidation processes for TNT removal: A review. Journal of Hazardous Materials, 178(1-3), 10-28. doi:10.1016/j.jhazmat.2010.02.042

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039

Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018

Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. doi:10.1016/j.apcatb.2003.09.010

Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564

Rahim Pouran, S., Abdul Aziz, A. R., & Wan Daud, W. M. A. (2015). Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. Journal of Industrial and Engineering Chemistry, 21, 53-69. doi:10.1016/j.jiec.2014.05.005

Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33-50. doi:10.1016/s0304-3894(02)00282-0

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121-135. doi:10.1016/j.jhazmat.2014.04.054

Chiron, S. (2000). Pesticide chemical oxidation: state-of-the-art. Water Research, 34(2), 366-377. doi:10.1016/s0043-1354(99)00173-6

Herney-Ramirez, J., Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98(1-2), 10-26. doi:10.1016/j.apcatb.2010.05.004

Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517

Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 4(12), 1712-1730. doi:10.1002/cssc.201100216

Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453

Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 5(15), 7160-7169. doi:10.1021/am401489n

Espinosa, J. C., Navalón, S., Álvaro, M., & García, H. (2015). Silver Nanoparticles Supported on Diamond Nanoparticles as a Highly Efficient Photocatalyst for the Fenton Reaction under Natural Sunlight Irradiation. ChemCatChem, 7(17), 2682-2688. doi:10.1002/cctc.201500458

Sempere, D., Navalon, S., Dančíková, M., Alvaro, M., & Garcia, H. (2013). Influence of pretreatments on commercial diamond nanoparticles on the photocatalytic activity of supported gold nanoparticles under natural Sunlight irradiation. Applied Catalysis B: Environmental, 142-143, 259-267. doi:10.1016/j.apcatb.2013.05.016

Scaiano, J. C., Netto-Ferreira, J. C., Alarcon, E., Billone, P., Alejo, C. J. B., Crites, C.-O. L., … Wee, T.-L. (2011). Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 83(4), 913-930. doi:10.1351/pac-con-11-01-09

Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. (2012). Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 48(40), 4798. doi:10.1039/c2cc30615h

Subash, B., Krishnakumar, B., Swaminathan, M., & Shanthi, M. (2013). Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir, 29(3), 939-949. doi:10.1021/la303842c

Mondal, C., Pal, J., Ganguly, M., Sinha, A. K., Jana, J., & Pal, T. (2014). A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New Journal of Chemistry, 38(7), 2999. doi:10.1039/c4nj00227j

Litter, M. (1999). Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. doi:10.1016/s0926-3373(99)00069-7

Chanderia, K., Kumar, S., Sharma, J., Ameta, R., & Punjabi, P. B. (2017). Degradation of Sunset Yellow FCF using copper loaded bentonite and H 2 O 2 as photo-Fenton like reagent. Arabian Journal of Chemistry, 10, S205-S211. doi:10.1016/j.arabjc.2012.07.023

Lam, F. L. Y., Yip, A. C. K., & Hu, X. (2007). Copper/MCM-41 as a Highly Stable and pH-insensitive Heterogeneous Photo-Fenton-like Catalytic Material for the Abatement of Organic Wastewater. Industrial & Engineering Chemistry Research, 46(10), 3328-3333. doi:10.1021/ie061436b

Pradhan, A. C., Nanda, B., Parida, K. M., & Das, M. (2013). Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3–MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material. Dalton Trans., 42(2), 558-566. doi:10.1039/c2dt32050a

Yip, A. C.-K., Lam, F. L.-Y., & Hu, X. (2005). A novel heterogeneous acid-activated clay supported copper catalyst for the photobleaching and degradation of textile organic pollutant using photo-Fenton-like reaction. Chemical Communications, (25), 3218. doi:10.1039/b501531f

Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chemical Communications, 49(23), 2359. doi:10.1039/c3cc39011j

Martín, R., Álvaro, M., Herance, J. R., & García, H. (2010). Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 4(1), 65-74. doi:10.1021/nn901616c

Thompson, T. L., & Yates, J. T. (2006). Surface Science Studies of the Photoactivation of TiO2New Photochemical Processes. Chemical Reviews, 106(10), 4428-4453. doi:10.1021/cr050172k

Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2012). Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem, 5(1), 241-246. doi:10.1002/cctc.201200569

Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Applied Catalysis B: Environmental, 103(1-2), 246-252. doi:10.1016/j.apcatb.2011.01.035

Zelmanov, G., & Semiat, R. (2008). Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts. Water Research, 42(14), 3848-3856. doi:10.1016/j.watres.2008.05.009

Chanquía, C. M., Andrini, L., Fernández, J. D., Crivello, M. E., Requejo, F. G., Herrero, E. R., & Eimer, G. A. (2010). Speciation of Copper in Spherical Mesoporous Silicates: From the Microscale to Angstrom. The Journal of Physical Chemistry C, 114(28), 12221-12229. doi:10.1021/jp102622v

Chen, H., Yao, J., Wang, F., Zhou, Y., Chen, K., Zhuang, R., … Zaray, G. (2010). Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Science of The Total Environment, 408(5), 1043-1049. doi:10.1016/j.scitotenv.2009.11.051

QUINTANILLA, A., CASAS, J., MOHEDANO, A., & RODRIGUEZ, J. (2006). Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 67(3-4), 206-216. doi:10.1016/j.apcatb.2006.05.003

Quintanilla, A., Casas, J. A., & Rodriguez, J. J. (2010). Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 93(3-4), 339-345. doi:10.1016/j.apcatb.2009.10.007

Burkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440

Sellers, R. M. (1980). Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. The Analyst, 105(1255), 950. doi:10.1039/an9800500950

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem