- -

Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology. 6(14):5238-5261. https://doi.org/10.1039/c6cy00695g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140217

Ficheros en el ítem

Metadatos del ítem

Título: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts
Autor: Dhakshinamoorthy, Amarajothi Asiri, Abdullah M. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Metal organic frameworks (MOFs) are among the most studied heterogeneous catalysts that have been applied to promote a wide range of reactions. Most of the initial studies on the catalytic activity of MOFs were based ...[+]
Derechos de uso: Cerrado
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c6cy00695g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c6cy00695g
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
info:eu-repo/grantAgreement/DST//SB%2FFT%2FCS-166%2F2013/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
ADM thanks University Grants Commission (UGC), New Delhi for the award of Assistant Professorship under its Faculty Recharge Programme. ADM also thanks the Department of Science and Technology, India, for financial support ...[+]
Tipo: Artículo

References

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k [+]
Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e

Dhakshinamoorthy, A., & Garcia, H. (2014). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev., 43(16), 5750-5765. doi:10.1039/c3cs60442j

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387a

Ferrer, B., Alvaro, M., Baldovi, H. G., Reinsch, H., & Stock, N. (2014). Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10. ChemPhysChem, 15(5), 924-928. doi:10.1002/cphc.201301178

Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386

Chen, B., Eddaoudi, M., Reineke, T. M., Kampf, J. W., O’Keeffe, M., & Yaghi, O. M. (2000). Cu2(ATC)·6H2O:  Design of Open Metal Sites in Porous Metal−Organic Crystals (ATC:  1,3,5,7-Adamantane Tetracarboxylate). Journal of the American Chemical Society, 122(46), 11559-11560. doi:10.1021/ja003159k

Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., … Yaghi, O. M. (2001). Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units:  New Examples and Simplifying Principles for Complex Structures▵. Journal of the American Chemical Society, 123(34), 8239-8247. doi:10.1021/ja010825o

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Mellot-Draznieks, C., Dutour, J., & Férey, G. (2004). Hybrid Organic-Inorganic Frameworks: Routes for Computational Design and Structure Prediction. Angewandte Chemie International Edition, 43(46), 6290-6296. doi:10.1002/anie.200454251

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g

Lescouet, T., Kockrick, E., Bergeret, G., Pera-Titus, M., Aguado, S., & Farrusseng, D. (2012). Homogeneity of flexible metal–organic frameworks containing mixed linkers. Journal of Materials Chemistry, 22(20), 10287. doi:10.1039/c2jm15966j

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., & Gascon, J. (2016). Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 307, 147-187. doi:10.1016/j.ccr.2015.06.008

Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e

Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K., & Guillerm, V. (2015). Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 44(1), 228-249. doi:10.1039/c4cs00230j

Cook, T. R., Zheng, Y.-R., & Stang, P. J. (2012). Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 113(1), 734-777. doi:10.1021/cr3002824

Leus, K., Bogaerts, T., De Decker, J., Depauw, H., Hendrickx, K., Vrielinck, H., … Van Der Voort, P. (2016). Systematic study of the chemical and hydrothermal stability of selected «stable» Metal Organic Frameworks. Microporous and Mesoporous Materials, 226, 110-116. doi:10.1016/j.micromeso.2015.11.055

Moon, H. R., Lim, D.-W., & Suh, M. P. (2013). Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev., 42(4), 1807-1824. doi:10.1039/c2cs35320b

García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b

Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586f

Opanasenko, M., Dhakshinamoorthy, A., Hwang, Y. K., Chang, J.-S., Garcia, H., & Čejka, J. (2013). Superior Performance of Metal-Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 6(5), 865-871. doi:10.1002/cssc.201300032

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

Livage, C., Forster, P. M., Guillou, N., Tafoya, M. M., Cheetham, A. K., & Férey, G. (2007). Effect of Mixing of Metal Cations on the Topology of Metal Oxide Networks. Angewandte Chemie International Edition, 46(31), 5877-5879. doi:10.1002/anie.200700247

Férey, G., Millange, F., Morcrette, M., Serre, C., Doublet, M.-L., Grenèche, J.-M., & Tarascon, J.-M. (2007). Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angewandte Chemie International Edition, 46(18), 3259-3263. doi:10.1002/anie.200605163

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p

Stavitski, E., Goesten, M., Juan-Alcañiz, J., Martinez-Joaristi, A., Serra-Crespo, P., Petukhov, A. V., … Kapteijn, F. (2011). Kinetic Control of Metal-Organic Framework Crystallization Investigated by Time-Resolved In Situ X-Ray Scattering. Angewandte Chemie International Edition, 50(41), 9624-9628. doi:10.1002/anie.201101757

Yin, Z., Zhou, Y.-L., Zeng, M.-H., & Kurmoo, M. (2015). The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 44(12), 5258-5275. doi:10.1039/c4dt04030a

Zhao, X.-L., & Sun, W.-Y. (2014). The organic ligands with mixed N-/O-donors used in construction of functional metal–organic frameworks. CrystEngComm, 16(16), 3247. doi:10.1039/c3ce41791c

Chae, H. K., Kim, J., Friedrichs, O. D., O’Keeffe, M., & Yaghi, O. M. (2003). Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of[Zn4O(TCA)2] Having the Pyrite Topology. Angewandte Chemie International Edition, 42(33), 3907-3909. doi:10.1002/anie.200351546

Climent, M. J., Corma, A., Iborra, S., & Sabater, M. J. (2014). Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 4(3), 870-891. doi:10.1021/cs401052k

Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g

Felpin, F.-X., & Fouquet, E. (2008). Heterogeneous Multifunctional Catalysts for Tandem Processes: An Approach toward Sustainability. ChemSusChem, 1(8-9), 718-724. doi:10.1002/cssc.200800110

Jagadeesan, D. (2016). Multifunctional nanocatalysts for tandem reactions: A leap toward sustainability. Applied Catalysis A: General, 511, 59-77. doi:10.1016/j.apcata.2015.11.033

Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., & Basset, J.-M. (2011). Magnetically Recoverable Nanocatalysts. Chemical Reviews, 111(5), 3036-3075. doi:10.1021/cr100230z

Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148

Barrer, R. M., & Walker, A. J. (1964). Imbibition of electrolytes by porous crystals. Transactions of the Faraday Society, 60, 171. doi:10.1039/tf9646000171

Rossin, J. A., Saldarriaga, C., & Davis, M. E. (1987). Synthesis of cobalt containing ZSM-5. Zeolites, 7(4), 295-300. doi:10.1016/0144-2449(87)90030-3

Chavan, S. M., Shearer, G. C., Svelle, S., Olsbye, U., Bonino, F., Ethiraj, J., … Bordiga, S. (2014). Synthesis and Characterization of Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. Inorganic Chemistry, 53(18), 9509-9515. doi:10.1021/ic500607a

Wang, L. J., Deng, H., Furukawa, H., Gándara, F., Cordova, K. E., Peri, D., & Yaghi, O. M. (2014). Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorganic Chemistry, 53(12), 5881-5883. doi:10.1021/ic500434a

Li, M., Li, D., O’Keeffe, M., & Yaghi, O. M. (2013). Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 114(2), 1343-1370. doi:10.1021/cr400392k

Morris, W., Taylor, R. E., Dybowski, C., Yaghi, O. M., & Garcia-Garibay, M. A. (2011). Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. Journal of Molecular Structure, 1004(1-3), 94-101. doi:10.1016/j.molstruc.2011.07.037

Rowsell, J. L. C., & Yaghi, O. M. (2006). Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal−Organic Frameworks. Journal of the American Chemical Society, 128(4), 1304-1315. doi:10.1021/ja056639q

Li, S.-Y., & Liu, Z.-H. (2016). Co5In(BTC)4[B2O4(OH)]2: the first MOF material constructed by borate polyanions and carboxylate mixed ligands. Dalton Transactions, 45(1), 66-69. doi:10.1039/c5dt03535j

Larrea, E. S., Fernández de Luis, R., Orive, J., Iglesias, M., & Arriortua, M. I. (2015). [NaCu(2,4-HPdc)(2,4-Pdc)] Mixed Metal-Organic Framework as a Heterogeneous Catalyst. European Journal of Inorganic Chemistry, 2015(28), 4699-4707. doi:10.1002/ejic.201500431

Reimer, N., Bueken, B., Leubner, S., Seidler, C., Wark, M., De Vos, D., & Stock, N. (2015). Three Series of Sulfo-Functionalized Mixed-Linker CAU-10 Analogues: Sorption Properties, Proton Conductivity, and Catalytic Activity. Chemistry - A European Journal, 21(35), 12517-12524. doi:10.1002/chem.201501502

Siu, P. W., Brown, Z. J., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2013). A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chemical Communications, 49(93), 10920. doi:10.1039/c3cc47177b

Lili, L., Xin, Z., Shumin, R., Ying, Y., Xiaoping, D., Jinsen, G., … Jing, H. (2014). Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions. RSC Adv., 4(25), 13093-13107. doi:10.1039/c4ra01269k

Liu, X., Akerboom, S., Jong, M. de, Mutikainen, I., Tanase, S., Meijerink, A., & Bouwman, E. (2015). Mixed-Lanthanoid Metal–Organic Framework for Ratiometric Cryogenic Temperature Sensing. Inorganic Chemistry, 54(23), 11323-11329. doi:10.1021/acs.inorgchem.5b01924

Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Wang, J., … Guo, X. (2016). Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 45(19), 7952-7959. doi:10.1039/c5dt05002b

Cancino, P., Vega, A., Santiago-Portillo, A., Navalon, S., Alvaro, M., Aguirre, P., … García, H. (2016). A novel copper(ii)–lanthanum(iii) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science & Technology, 6(11), 3727-3736. doi:10.1039/c5cy01448d

Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540

Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522h

Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T., & Farha, O. K. (2014). Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev., 43(16), 5896-5912. doi:10.1039/c4cs00067f

Song, X., Kim, T. K., Kim, H., Kim, D., Jeong, S., Moon, H. R., & Lah, M. S. (2012). Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations. Chemistry of Materials, 24(15), 3065-3073. doi:10.1021/cm301605w

Sun, D., Liu, W., Qiu, M., Zhang, Y., & Li, Z. (2015). Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 51(11), 2056-2059. doi:10.1039/c4cc09407g

Smith, S. J. D., Ladewig, B. P., Hill, A. J., Lau, C. H., & Hill, M. R. (2015). Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes. Scientific Reports, 5(1). doi:10.1038/srep07823

Bae, Y.-S., Dubbeldam, D., Nelson, A., Walton, K. S., Hupp, J. T., & Snurr, R. Q. (2009). Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 21(20), 4768-4777. doi:10.1021/cm803218f

Hendon, C. H., Bonnefoy, J., Quadrelli, E. A., Canivet, J., Chambers, M. B., Rousse, G., … Mellot-Draznieks, C. (2016). A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks. Chemistry - A European Journal, 22(11), 3713-3718. doi:10.1002/chem.201600143

Suga, M., Asahina, S., Sakuda, Y., Kazumori, H., Nishiyama, H., Nokuo, T., … Terasaki, O. (2014). Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 42(1-2), 1-21. doi:10.1016/j.progsolidstchem.2014.02.001

Kozachuk, O., Meilikhov, M., Yusenko, K., Schneemann, A., Jee, B., Kuttatheyil, A. V., … Fischer, R. A. (2013). A Solid-Solution Approach to Mixed-Metal Metal-Organic Frameworks - Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013(26), 4546-4557. doi:10.1002/ejic.201300591

Nevjestić, I., Depauw, H., Leus, K., Kalendra, V., Caretti, I., Jeschke, G., … Vrielinck, H. (2015). Multi-frequency (S, X, Q and W-band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal-Organic Framework MIL-53. ChemPhysChem, 16(14), 2968-2973. doi:10.1002/cphc.201500522

Katzenmeyer, A. M., Canivet, J., Holland, G., Farrusseng, D., & Centrone, A. (2014). Assessing Chemical Heterogeneity at the Nanoscale in Mixed-Ligand Metal-Organic Frameworks with the PTIR Technique. Angewandte Chemie International Edition, 53(11), 2852-2856. doi:10.1002/anie.201309295

Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020

Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., … Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry - A European Journal, 10(6), 1373-1382. doi:10.1002/chem.200305413

Krajnc, A., Kos, T., Zabukovec Logar, N., & Mali, G. (2015). A Simple NMR-Based Method for Studying the Spatial Distribution of Linkers within Mixed-Linker Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(36), 10535-10538. doi:10.1002/anie.201504426

Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J. A., Smit, B., … Reimer, J. A. (2013). Mapping of Functional Groups in Metal-Organic Frameworks. Science, 341(6148), 882-885. doi:10.1126/science.1238339

Mohideen, M. I. H., Xiao, B., Wheatley, P. S., McKinlay, A. C., Li, Y., Slawin, A. M. Z., … Morris, R. E. (2011). Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chemistry, 3(4), 304-310. doi:10.1038/nchem.1003

Mohideen, M. I., Allan, P. K., Chapman, K. W., Hriljac, J. A., & Morris, R. E. (2014). Ultrasound-driven preparation and pair distribution function-assisted structure solution of a copper-based layered coordination polymer. Dalton Trans., 43(27), 10438-10442. doi:10.1039/c3dt53124d

Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176

Elmekawy, A. A., Shiju, N. R., Rothenberg, G., & Brown, D. R. (2014). Environmentally Benign Bifunctional Solid Acid and Base Catalysts. Industrial & Engineering Chemistry Research, 53(49), 18722-18728. doi:10.1021/ie500839m

Leyva-Pérez, A., Cabrero-Antonino, J. R., & Corma, A. (2010). Bifunctional solid catalysts for chemoselective hydrogenation–cyclisation–amination cascade reactions of relevance for the synthesis of pharmaceuticals. Tetrahedron, 66(41), 8203-8209. doi:10.1016/j.tet.2010.08.022

Mitchell, L., Williamson, P., Ehrlichová, B., Anderson, A. E., Seymour, V. R., Ashbrook, S. E., … Wright, P. A. (2014). Mixed-Metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis Acid Catalysis and Tandem CC Bond Formation and Alcohol Oxidation. Chemistry - A European Journal, 20(51), 17185-17197. doi:10.1002/chem.201404377

Manna, K., Zhang, T., Greene, F. X., & Lin, W. (2015). Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation. Journal of the American Chemical Society, 137(7), 2665-2673. doi:10.1021/ja512478y

Lohr, T. L., & Marks, T. J. (2015). Orthogonal tandem catalysis. Nature Chemistry, 7(6), 477-482. doi:10.1038/nchem.2262

Taarning, E., Osmundsen, C. M., Yang, X., Voss, B., Andersen, S. I., & Christensen, C. H. (2011). Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci., 4(3), 793-804. doi:10.1039/c004518g

Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536

Kar, P., Haldar, R., Gómez-García, C. J., & Ghosh, A. (2012). Antiferromagnetic Porous Metal–Organic Framework Containing Mixed-Valence [MnII4MnIII2(μ4-O)2]10+ Units with Catecholase Activity and Selective Gas Adsorption. Inorganic Chemistry, 51(7), 4265-4273. doi:10.1021/ic2027362

SHI, F.-N., Silva, A. R., Yang, T.-H., & Rocha, J. (2013). Mixed Cu(ii)–Bi(iii) metal organic framework with a 2D inorganic subnetwork and its catalytic activity. CrystEngComm, 15(19), 3776. doi:10.1039/c3ce27056d

Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040

Sun, D., Sun, F., Deng, X., & Li, Z. (2015). Mixed-Metal Strategy on Metal–Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorganic Chemistry, 54(17), 8639-8643. doi:10.1021/acs.inorgchem.5b01278

Krap, C. P., Newby, R., Dhakshinamoorthy, A., García, H., Cebula, I., Easun, T. L., … Schröder, M. (2016). Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2). Inorganic Chemistry, 55(3), 1076-1088. doi:10.1021/acs.inorgchem.5b02108

Dietzel, P. D. C., Morita, Y., Blom, R., & Fjellvåg, H. (2005). An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains. Angewandte Chemie International Edition, 44(39), 6354-6358. doi:10.1002/anie.200501508

Fu, Y., Sun, D., Qin, M., Huang, R., & Li, Z. (2012). Cu(ii)-and Co(ii)-containing metal–organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Advances, 2(8), 3309. doi:10.1039/c2ra01038k

Kleist, W., Jutz, F., Maciejewski, M., & Baiker, A. (2009). Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. European Journal of Inorganic Chemistry, 2009(24), 3552-3561. doi:10.1002/ejic.200900509

Kleist, W., Maciejewski, M., & Baiker, A. (2010). MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochimica Acta, 499(1-2), 71-78. doi:10.1016/j.tca.2009.11.004

Huang, Y., Gao, S., Liu, T., Lü, J., Lin, X., Li, H., & Cao, R. (2012). Palladium Nanoparticles Supported on Mixed-Linker Metal-Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 77(2), 106-112. doi:10.1002/cplu.201100021

Kozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128

Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004

Xu, X., van Bokhoven, J. A., & Ranocchiari, M. (2014). Tuning Regioisomer Reactivity in Catalysis using Bifunctional Metal-Organic Frameworks with Mixed Linkers. ChemCatChem, 6(7), 1887-1891. doi:10.1002/cctc.201402164

Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., … Li, Z. (2013). Studies on Photocatalytic CO2Reduction over NH2-Uio-66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal-Organic Frameworks. Chemistry - A European Journal, 19(42), 14279-14285. doi:10.1002/chem.201301728

Goh, T. W., Xiao, C., Maligal-Ganesh, R. V., Li, X., & Huang, W. (2015). Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 124, 45-51. doi:10.1016/j.ces.2014.08.052

Wang, J.-L., Wang, C., & Lin, W. (2012). Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2(12), 2630-2640. doi:10.1021/cs3005874

Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084

Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581

Lee, Y., Kim, S., Kang, J. K., & Cohen, S. M. (2015). Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 51(26), 5735-5738. doi:10.1039/c5cc00686d

Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2014). Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem, 6(12), 3426-3433. doi:10.1002/cctc.201402546

Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610

Le, H. T. N., Tran, T. V., Phan, N. T. S., & Truong, T. (2015). Efficient and recyclable Cu2(BDC)2(BPY)-catalyzed oxidative amidation of terminal alkynes: role of bipyridine ligand. Catalysis Science & Technology, 5(2), 851-859. doi:10.1039/c4cy01074d

Masoomi, M. Y., Bagheri, M., & Morsali, A. (2015). Application of Two Cobalt-Based Metal–Organic Frameworks as Oxidative Desulfurization Catalysts. Inorganic Chemistry, 54(23), 11269-11275. doi:10.1021/acs.inorgchem.5b01850

Xuan, W., Ye, C., Zhang, M., Chen, Z., & Cui, Y. (2013). A chiral porous metallosalan-organic framework containing titanium-oxo clusters for enantioselective catalytic sulfoxidation. Chemical Science, 4(8), 3154. doi:10.1039/c3sc50487e

Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459c

Cui, G.-H., He, C.-H., Jiao, C.-H., Geng, J.-C., & Blatov, V. A. (2012). Two metal–organic frameworks with unique high-connected binodal network topologies: synthesis, structures, and catalytic properties. CrystEngComm, 14(12), 4210. doi:10.1039/c2ce25264c

Qin, L., Zheng, J., Xiao, S.-L., Zheng, X.-H., & Cui, G.-H. (2013). A new supramolecular net constructed with 2D (4,4) layer subunits displaying unique 4-connected msw/P42/nnm topology: Structure, fluorescence and catalytic properties. Inorganic Chemistry Communications, 34, 71-74. doi:10.1016/j.inoche.2013.05.011

Wang, X. X., Yu, B., Van Hecke, K., & Cui, G. H. (2014). Four cobalt(ii) coordination polymers with diverse topologies derived from flexible bis(benzimidazole) and aromatic dicarboxylic acids: syntheses, crystal structures and catalytic properties. RSC Adv., 4(106), 61281-61289. doi:10.1039/c4ra08138b

Wang, X.-L., Liu, D.-N., Luan, J., Lin, H.-Y., Le, M., & Liu, G.-C. (2015). Controllable assembly of three copper(II/I) metal–organic frameworks based on N,N′-bis(4-pyridinecarboxamide)-1,2-cyclohexane and 4,4′-oxydibenzoic acid: From three-dimensional interpenetrating framework to one-dimensional infinite chain. Inorganica Chimica Acta, 426, 39-44. doi:10.1016/j.ica.2014.11.010

Lü, C.-N., Chen, M.-M., Zhang, W.-H., Li, D.-X., Dai, M., & Lang, J.-P. (2015). Construction of Zn(ii) and Cd(ii) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 17(9), 1935-1943. doi:10.1039/c4ce02074j

Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation. ChemCatChem, 5(10), 3092-3100. doi:10.1002/cctc.201300371

Yu, X., & Cohen, S. M. (2015). Photocatalytic metal–organic frameworks for the aerobic oxidation of arylboronic acids. Chemical Communications, 51(48), 9880-9883. doi:10.1039/c5cc01697e

Hou, C.-C., Li, T.-T., Cao, S., Chen, Y., & Fu, W.-F. (2015). Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. Journal of Materials Chemistry A, 3(19), 10386-10394. doi:10.1039/c5ta01135c

Chen, L., Rangan, S., Li, J., Jiang, H., & Li, Y. (2014). A molecular Pd(ii) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 16(8), 3978. doi:10.1039/c4gc00314d

Ren, Y., Cheng, X., Yang, S., Qi, C., Jiang, H., & Mao, Q. (2013). A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Transactions, 42(27), 9930. doi:10.1039/c3dt50664a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem