- -

Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions

Mostrar el registro completo del ítem

Dubey, R.; Mishra, LN.; Sánchez Ruiz, LM. (2019). Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions. Symmetry (Basel). 11(11):1-18. https://doi.org/10.3390/sym11111348

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140844

Ficheros en el ítem

Metadatos del ítem

Título: Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions
Autor: Dubey, Ramu Mishra, Lakshmi Narayan Sánchez Ruiz, Luis Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this article, a pair of nondifferentiable second-order symmetric fractional primal-dual model (G-Mond-Weir type model) in vector optimization problem is formulated over arbitrary cones. In addition, we construct a ...[+]
Palabras clave: Multiobjective , Symmetric duality , Second-order , Nondifferentiable , Fractional programming , Support function , G(f)-bonvexity , G(f)-pseudobonvexity
Derechos de uso: Reconocimiento (by)
Fuente:
Symmetry (Basel). (eissn: 2073-8994 )
DOI: 10.3390/sym11111348
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/sym11111348
Tipo: Artículo

References

Suneja, S. K., Aggarwal, S., & Davar, S. (2002). Multiobjective symmetric duality involving cones. European Journal of Operational Research, 141(3), 471-479. doi:10.1016/s0377-2217(01)00258-2

Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29-50. doi:10.1007/s10479-007-0186-0

Mangasarian, O. . (1975). Second- and higher-order duality in nonlinear programming. Journal of Mathematical Analysis and Applications, 51(3), 607-620. doi:10.1016/0022-247x(75)90111-0 [+]
Suneja, S. K., Aggarwal, S., & Davar, S. (2002). Multiobjective symmetric duality involving cones. European Journal of Operational Research, 141(3), 471-479. doi:10.1016/s0377-2217(01)00258-2

Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29-50. doi:10.1007/s10479-007-0186-0

Mangasarian, O. . (1975). Second- and higher-order duality in nonlinear programming. Journal of Mathematical Analysis and Applications, 51(3), 607-620. doi:10.1016/0022-247x(75)90111-0

Kim, D. S., Yun, Y. B., & Lee, W. J. (1998). Multiobjective symmetric duality with cone constraints. European Journal of Operational Research, 107(3), 686-691. doi:10.1016/s0377-2217(97)00322-6

Suneja, S. K., Lalitha, C. S., & Khurana, S. (2003). Second order symmetric duality in multiobjective programming. European Journal of Operational Research, 144(3), 492-500. doi:10.1016/s0377-2217(02)00154-6

Khurana, S. (2005). Symmetric duality in multiobjective programming involving generalized cone-invex functions. European Journal of Operational Research, 165(3), 592-597. doi:10.1016/j.ejor.2003.03.004

Antczak, T. (2007). New optimality conditions and duality results of type in differentiable mathematical programming. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1617-1632. doi:10.1016/j.na.2006.02.013

Dubey, R., & Mishra, V. N. (2019). Symmetric duality results for second-order nondifferentiable multiobjective programming problem. RAIRO - Operations Research, 53(2), 539-558. doi:10.1051/ro/2019044

Dubey, R., Mishra, L. N., & Ali, R. (2019). Special Class of Second-Order Non-Differentiable Symmetric Duality Problems with (G,αf)-Pseudobonvexity Assumptions. Mathematics, 7(8), 763. doi:10.3390/math7080763

Antczak, T. (2008). On G-invex multiobjective programming. Part I. Optimality. Journal of Global Optimization, 43(1), 97-109. doi:10.1007/s10898-008-9299-5

Gao, X. (2014). Sufficiency in Multiobjective Programming under Second-orderB- (p,r) -V- type I Functions. Journal of Interdisciplinary Mathematics, 17(4), 385-402. doi:10.1080/09720502.2014.952524

Brumelle, S. (1981). Duality for Multiple Objective Convex Programs. Mathematics of Operations Research, 6(2), 159-172. doi:10.1287/moor.6.2.159

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem