- -

Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes Calderón, María Antonia es_ES
dc.contributor.author Borrego, Adrián es_ES
dc.contributor.author Latorre Grau, Jorge es_ES
dc.contributor.author Colomer Font, Carolina es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Sánchez-Ledesma, María José es_ES
dc.contributor.author Noé-Sebastián, Enrique es_ES
dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.date.accessioned 2020-04-17T12:48:21Z
dc.date.available 2020-04-17T12:48:21Z
dc.date.issued 2018-05 es_ES
dc.identifier.issn 0148-5598 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140845
dc.description.abstract [EN] Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb. es_ES
dc.description.sponsorship This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TIN2014-61975-EXP and Grant BES-2014-068218) and by Universitat Politecnica de Valencia (Grant PAID-10-14 and Grant PAID-10-16). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Medical Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Virtual reality es_ES
dc.subject TDCS es_ES
dc.subject Eye-tracking es_ES
dc.subject Surface electromyography es_ES
dc.subject Upper limb paresis es_ES
dc.subject Monoparesis, stroke es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10916-018-0949-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-068218/ES/BES-2014-068218/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-61975-EXP/ES/REHABILITACION DE ESTADOS ALTERADOS DE CONCIENCIA EN FASE TEMPRANA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Fuentes Calderón, MA.; Borrego, A.; Latorre Grau, J.; Colomer Font, C.; Alcañiz Raya, ML.; Sánchez-Ledesma, MJ.; Noé-Sebastián, E.... (2018). Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis. Journal of Medical Systems. 42(5):1-9. https://doi.org/10.1007/s10916-018-0949-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10916-018-0949-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\358842 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Invernizzi, M., Negrini, S., Da, S. C., Lanzotti, L., Cisari, C., and Baricich, A., The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 49:311–317, 2013. es_ES
dc.description.references Park, Y., Chang, M., Kim, K.-M., and An, D.-H., The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients. J. Phys. Ther. Sci. 27:1499–1501, 2015. https://doi.org/10.1589/jpts.27.1499 . es_ES
dc.description.references Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., and van Wijck, F., Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11, 2014. https://doi.org/10.1002/14651858.CD010820.pub2 . es_ES
dc.description.references Barker, R. N., Gill, T. J., and Brauer, S. G., Factors contributing to upper limb recovery after stroke: A survey of stroke survivors in Queensland Australia. Disabil. Rehabil. 29:981–989, 2007. https://doi.org/10.1080/09638280500243570 . es_ES
dc.description.references Bayona, N. A., Bitensky, J., Salter, K., and Teasell, R., The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil. 12:58–65, 2005. https://doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR . es_ES
dc.description.references Coupar, F., Pollock, A., Rowe, P., Weir, C., and Langhorne, P., Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26:291–313, 2012. https://doi.org/10.1177/0269215511420305 . es_ES
dc.description.references Hunter, S. M., Crome, P., Sim, J., and Pomeroy, V. M., Effects of Mobilization and Tactile Stimulation on Recovery of the Hemiplegic Upper Limb: A Series of Replicated Single-System Studies. Arch. Phys. Med. Rehabil. 89:2003–2010, 2008. https://doi.org/10.1016/j.apmr.2008.03.016 . es_ES
dc.description.references Colomer, C., Noé, E., and Llorens, R., Mirror therapy in chronic stroke survivors with severely impaired upper limb function: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 52:271–278, 2016. es_ES
dc.description.references Lum, P. S., Mulroy, S., Amdur, R. L., Requejo, P., Prilutsky, B. I., and Dromerick, A. W., Gains in upper extremity function after stroke via recovery or compensation: Potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 16:237–253, 2009. https://doi.org/10.1310/tsr1604-237 . es_ES
dc.description.references Taub, E., Uswatte, G., Mark, V. W., and Morris, D. M. M., The learned nonuse phenomenon: implications for rehabilitation. Eura. Medicophys. 42:241–256, 2006. es_ES
dc.description.references Deconinck, F. J. A., Smorenburg, A. R. P., Benham, A., Ledebt, A., Feltham, M. G., and Savelsbergh, G. J. P., Reflections on Mirror Therapy: A Systematic Review of the Effect of Mirror Visual Feedback on the Brain. Neurorehabil. Neural Repair. 29:349–361, 2014. https://doi.org/10.1177/1545968314546134 . es_ES
dc.description.references Lindberg, P. G., Schmitz, C., Engardt, M., Forssberg, H., and Borg, J., Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients. Neurorehabil. Neural Repair. 21:315–326, 2007. https://doi.org/10.1177/1545968306296965 . es_ES
dc.description.references Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., and Behrens, J., Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial. Clin. Rehabil. 27:314–324, 2013. https://doi.org/10.1177/0269215512455651 . es_ES
dc.description.references Dettmers, C., Benz, M., Liepert, J., and Rockstroh, B., Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases. Acta Neurol. Scand. 126:238–247, 2012. https://doi.org/10.1111/j.1600-0404.2012.01680.x . es_ES
dc.description.references Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., and Walker, S. R., Neural substrates for motor imagery in severe hemiparesis. Neurorehabil. Neural Repair. 20:268–277, 2006. https://doi.org/10.1177/1545968306286958 . es_ES
dc.description.references Pascual-Leone, A., The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. J. Neurol. Neurosurg. Psychiatry. 82:393–398, 2011. https://doi.org/10.1136/jnnp.2009.194134 . es_ES
dc.description.references Gatti, R., Rocca, M. A., Fumagalli, S., Cattrysse, E., Kerckhofs, E., Falini, A., and Filippi, M., The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals. Brain Imaging Behav. 11:565–576, 2017. https://doi.org/10.1007/s11682-016-9536-3 . es_ES
dc.description.references Bonato, C., Miniussi, C., and Rossini, P. M., Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. Clin. Neurophysiol. 117:1699–1707, 2006. https://doi.org/10.1016/j.clinph.2006.05.006 . es_ES
dc.description.references Grundmann, L., Rolke, R., Nitsche, M. A., Pavlakovic, G., Happe, S., Treede, R. D., Paulus, W., and Bachmann, C. G., Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 4:253–260, 2011. https://doi.org/10.1016/j.brs.2010.12.002 . es_ES
dc.description.references von Rein, E., Hoff, M., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., and Ragert, P., Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation. J. Neurophysiol. 113:2383–2389, 2015. https://doi.org/10.1152/jn.00832.2014 . es_ES
dc.description.references Kim, Y. J., Ku, J., Cho, S., Kim, H. J., Cho, Y. K., Lim, T., and Kang, Y. J., Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. J. Neuroeng. Rehabil. 11:124, 2014. https://doi.org/10.1186/1743-0003-11-124 . es_ES
dc.description.references S. Bermúdez i Badia, G.G. Fluet, R. Llorens, J.E. Deutsch, Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence. In: Neurorehabilitation Technol., Second edi, Springer, 2016: pp. 573–603. https://doi.org/10.1007/978-3-319-28603-7_28 . es_ES
dc.description.references Im, H., Ku, J., Kim, H. J., and Kang, Y. J., Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Ann. Rehabil. Med. 40:420–431, 2016. https://doi.org/10.5535/arm.2016.40.3.420 . es_ES
dc.description.references Colomer, C., Llorens, R., Noé, E., and Alcañiz, M., Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. Neuroeng. Rehabil. 13, 2016. https://doi.org/10.1186/s12984-016-0153-6 . es_ES
dc.description.references Grimm, F., Naros, G., and Gharabaghi, A., Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front. Neurosci. 10:518, 2016. https://doi.org/10.3389/fnins.2016.00518 . es_ES
dc.description.references Poole, A., and Ball, L. J., Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encycl. Human-Computer Interact.:211–219, 2005. https://doi.org/10.4018/978-1-59140-562-7 . es_ES
dc.description.references R. Merletti, A. Botter, A. Troiano, E. Merlo, M.A. Minetto, Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art, Clin. Biomech. 24 (2009) 122–134. https://doi.org/10.1016/j.clinbiomech.2008.08.006 . es_ES
dc.description.references Trojano, L., Moretta, P., Loreto, V., Cozzolino, A., Santoro, L., and Estraneo, A., Quantitative assessment of visual behavior in disorders of consciousness. J. Neurol. 259:1888–1895, 2012. https://doi.org/10.1007/s00415-012-6435-4 . es_ES
dc.description.references Trojano, L., Moretta, P., Loreto, V., Santoro, L., and Estraneo, A., Affective saliency modifies visual tracking behavior in disorders of consciousness: A quantitative analysis. J. Neurol. 260:306–308, 2013. https://doi.org/10.1007/s00415-012-6717-x . es_ES
dc.description.references Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., and Gowland, C., Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 73:447–454, 1993. https://doi.org/10.1177/1545968304269210 . es_ES
dc.description.references Lang, C. E., Edwards, D. F., Birkenmeier, R. L., and Dromerick, A. W., Estimating Minimal Clinically Important Differences of Upper-Extremity Measures Early After Stroke. Arch. Phys. Med. Rehabil. 89:1693–1700, 2008. https://doi.org/10.1016/j.apmr.2008.02.022 . es_ES
dc.description.references Brooke, J., SUS - A quick and dirty usability scale. Usability Eval. Ind. 189:4–7, 1996. https://doi.org/10.1002/hbm.20701 . es_ES
dc.description.references McAuley, E., Duncan, T., and Tammen, V. V., Psychometric Properties of the Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confirmatory Factor Analysis. Res. Q. Exerc. Sport. 60:48–58, 1989. https://doi.org/10.1080/02701367.1989.10607413 . es_ES
dc.description.references Page, S. J., Fulk, G. D., and Boyne, P., Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92:791–798, 2012. https://doi.org/10.2522/ptj.20110009 . es_ES
dc.description.references R. Teasell, Evidence-Based Review of Stroke Rehabilitation - Background Concepts in Stroke Rehabilitation, 2016. http://www.ebrsr.com/evidence-review/3-background-concepts-stroke-rehabilitation . es_ES
dc.description.references Cameirão, M. S., Badia, S. B. I., Duarte, E., Frisoli, A., and Verschure, P. F. M. J., The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 43:2720–2728, 2012. https://doi.org/10.1161/STROKEAHA.112.653196 . es_ES
dc.description.references K.E. Laver, S. George, S. Thomas, J.E. Deutsch, M. Crotty, Virtual reality for stroke rehabilitation. In: Cochrane Database Syst. Rev., 2015: pp. 1–107. https://doi.org/10.1002/14651858.CD008349.pub3 . es_ES
dc.description.references Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., and Vandermeeren, Y., Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front. Hum. Neurosci. 6:343, 2012. https://doi.org/10.3389/fnhum.2012.00343 . es_ES
dc.description.references Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., and Schlaug, G., Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75:2176–2184, 2010. https://doi.org/10.1212/WNL.0b013e318202013a . es_ES
dc.description.references K. Figlewski, J.U. Blicher, J. Mortensen, K.E. Severinsen, J.F. Nielsen, H. Andersen, Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy, Stroke. (2016). http://stroke.ahajournals.org/content/early/2016/11/29/STROKEAHA.116.014988.abstract . es_ES
dc.description.references Lee, S. J., and Chun, M. H., Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 95:431–438, 2014. https://doi.org/10.1016/j.apmr.2013.10.027 . es_ES
dc.description.references Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Silva Filho, E. M., Dias, S. N., Teixeira-Salmela, L. F., and Monte-Silva, K. K., Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation. 34:437–446, 2014. https://doi.org/10.3233/NRE-141065 . es_ES
dc.description.references Sigrist, R., Rauter, G., Riener, R., and Wolf, P., Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 20:21–53, 2013. https://doi.org/10.3758/s13423-012-0333-8 . es_ES
dc.description.references Bowering, K. J., O’Connell, N. E., Tabor, A., Catley, M. J., Leake, H. B., Moseley, G. L., and Stanton, T. R., The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain. 14:3–13, 2013. https://doi.org/10.1016/j.jpain.2012.09.007 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem