- -

Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tenza-Abril, Antonio José es_ES
dc.contributor.author Saval, Jose Miguel es_ES
dc.contributor.author Garcia-Vera, Victoria Eugenia es_ES
dc.contributor.author Miguel Solak, Afonso es_ES
dc.contributor.author Real-Herraiz, Teresa Pilar es_ES
dc.contributor.author Marcos Ortega, José es_ES
dc.date.accessioned 2020-04-17T12:48:53Z
dc.date.available 2020-04-17T12:48:53Z
dc.date.issued 2019-01-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140862
dc.description.abstract [EN] Currently, political policies aimed at curbing the abuse of natural resources have given rise to a conscientiousness leading to the reevaluation of wastes. Wastes generated from previous mining operations greatly impact the environment, often leaving a legacy of elevated concentrations of heavy metals in the surrounding soil and water. In this study, two types of waste from the mining district of La Union (Spain) were used to study their use as a component of road wearing courses. The physical and mechanical characteristics were determined to identify the optimal content of bitumen, as well as the fatigue resistance using the four-point beam fatigue test, in all the mixtures manufactured. The mine tailings exhibited adequate physical and mechanical properties to be utilized as a coarse aggregate for a wearing course. The results indicate that one of the studied mine tailing forms could be used as a wearing course component, since it has properties similar to a control mix that is typically used in wearing course construction. es_ES
dc.description.sponsorship This work was financed by the University of Alicante through Projects VIGROB-256 and GRE10-28 and by the Valencian Community through project GV/2012/113. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mine tailings es_ES
dc.subject Waste es_ES
dc.subject Marshall Stability and flow tests es_ES
dc.subject Hot mix asphalt es_ES
dc.subject Fatigue resistance es_ES
dc.subject Permanent deformation es_ES
dc.subject Moisture sensitivity es_ES
dc.subject Environment es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9020272 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F113/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UA//VIGROB-256/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UA//GRE10-28/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Tenza-Abril, AJ.; Saval, JM.; Garcia-Vera, VE.; Miguel Solak, A.; Real-Herraiz, TP.; Marcos Ortega, J. (2019). Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design. Applied Sciences. 9(2):1-16. https://doi.org/10.3390/app9020272 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9020272 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\406027 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de Alicante es_ES
dc.description.references Ashley, P. M., Lottermoser, B. G., Collins, A. J., & Grant, C. D. (2004). Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environmental Geology, 46(5). doi:10.1007/s00254-004-1063-7 es_ES
dc.description.references Lee, C. H., Lee, H. K., & Lee, J. C. (2001). Hydrogeochemistry of mine, surface and groundwaters from the Sanggok mine creek in the upper Chungju Lake, Republic of Korea. Environmental Geology, 40(4-5), 482-494. doi:10.1007/s002540000184 es_ES
dc.description.references Marguı́, E., Salvadó, V., Queralt, I., & Hidalgo, M. (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Analytica Chimica Acta, 524(1-2), 151-159. doi:10.1016/j.aca.2004.05.043 es_ES
dc.description.references Intergovernmental Panel on Climate Change (Ed.). (s. f.). Summary for Policymakers. Climate Change 2013 - The Physical Science Basis, 1-30. doi:10.1017/cbo9781107415324.004 es_ES
dc.description.references Herrera, G., Tomás, R., Vicente, F., Lopez-Sanchez, J. M., Mallorquí, J. J., & Mulas, J. (2010). Mapping ground movements in open pit mining areas using differential SAR interferometry. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1114-1125. doi:10.1016/j.ijrmms.2010.07.006 es_ES
dc.description.references Herrera, G., Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorqui, J. J., Duque, S., & Mulas, J. (2007). Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90(3-4), 148-159. doi:10.1016/j.enggeo.2007.01.001 es_ES
dc.description.references Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2008). Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Applied Geochemistry, 23(5), 1232-1240. doi:10.1016/j.apgeochem.2007.11.013 es_ES
dc.description.references Gonzalez-Fernandez, O., Queralt, I., Carvalho, M. L., & Garcia, G. (2007). Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262(1), 81-86. doi:10.1016/j.nimb.2007.05.006 es_ES
dc.description.references Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology, 51(1), 47-64. doi:10.1007/s00254-006-0303-4 es_ES
dc.description.references Ma, F., Sha, A., Lin, R., Huang, Y., & Wang, C. (2016). Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China. International Journal of Environmental Research and Public Health, 13(3), 351. doi:10.3390/ijerph13030351 es_ES
dc.description.references Acosta Alvarez, D., Alonso Aenlle, A., & Tenza-Abril, A. (2018). Laboratory Evaluation of Hot Asphalt Concrete Properties with Cuban Recycled Concrete Aggregates. Sustainability, 10(8), 2590. doi:10.3390/su10082590 es_ES
dc.description.references Bueno, M., Luong, J., Terán, F., Viñuela, U., Vázquez, V., & Paje, S. (2014). Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process. Coatings, 4(3), 602-613. doi:10.3390/coatings4030602 es_ES
dc.description.references Woszuk, A., & Franus, W. (2017). A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Applied Sciences, 7(3), 293. doi:10.3390/app7030293 es_ES
dc.description.references Xiao, F., Li, R., Zhang, H., & Amirkhanian, S. (2017). Low Temperature Performance Characteristics of Reclaimed Asphalt Pavement (RAP) Mortars with Virgin and Aged Soft Binders. Applied Sciences, 7(3), 304. doi:10.3390/app7030304 es_ES
dc.description.references Moon, K. H., Falchetto, A. C., Wang, D., Riccardi, C., & Wistuba, M. P. (2017). Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures. Materials, 10(7), 743. doi:10.3390/ma10070743 es_ES
dc.description.references Sangiorgi, C., Tataranni, P., Mazzotta, F., Simone, A., Vignali, V., & Lantieri, C. (2017). Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders. Coatings, 7(6), 76. doi:10.3390/coatings7060076 es_ES
dc.description.references Tenza-Abril, A. J., Saval, J. M., & Cuenca, A. (2015). Using Sewage-Sludge Ash as Filler in Bituminous Mixes. Journal of Materials in Civil Engineering, 27(4), 04014141. doi:10.1061/(asce)mt.1943-5533.0001087 es_ES
dc.description.references Kowalski, K., Król, J., Bańkowski, W., Radziszewski, P., & Sarnowski, M. (2017). Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent. Applied Sciences, 7(3), 216. doi:10.3390/app7030216 es_ES
dc.description.references Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1-3), 300-305. doi:10.1016/j.jhazmat.2008.09.105 es_ES
dc.description.references Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8), 3458-3468. doi:10.1016/j.conbuildmat.2011.03.037 es_ES
dc.description.references Pasetto, M., & Baldo, N. (2011). Performance comparative analysis of stone mastic asphalts with electric arc furnace steel slag: a laboratory evaluation. Materials and Structures, 45(3), 411-424. doi:10.1617/s11527-011-9773-2 es_ES
dc.description.references Amin, M., Khan, M., & Saleem, M. (2016). Performance Evaluation of Asphalt Modified with Municipal Wastes for Sustainable Pavement Construction. Sustainability, 8(10), 949. doi:10.3390/su8100949 es_ES
dc.description.references Rubio, M. C., Moreno, F., Belmonte, A., & Menéndez, A. (2010). Reuse of waste material from decorative quartz solid surfacing in the manufacture of hot bituminous mixes. Construction and Building Materials, 24(4), 610-618. doi:10.1016/j.conbuildmat.2009.09.004 es_ES
dc.description.references Rubio, M. C., Menéndez, A., Moreno, F., Belmonte, A., & Ramírez, A. (2011). Propiedades mecánicas de mezclas bituminosas en caliente fabricadas con áridos reciclados de residuos Silestone®. Materiales de Construcción, 61(301), 49-60. doi:10.3989/mc.2011.52709 es_ES
dc.description.references Baghaee Moghaddam, T., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236-242. doi:10.1016/j.conbuildmat.2012.02.054 es_ES
dc.description.references Costa, L., Peralta, J., Oliveira, J., & Silva, H. (2017). A New Life for Cross-Linked Plastic Waste as Aggregates and Binder Modifier for Asphalt Mixtures. Applied Sciences, 7(6), 603. doi:10.3390/app7060603 es_ES
dc.description.references Arabani, M. (2011). Effect of glass cullet on the improvement of the dynamic behaviour of asphalt concrete. Construction and Building Materials, 25(3), 1181-1185. doi:10.1016/j.conbuildmat.2010.09.043 es_ES
dc.description.references Paranavithana, S., & Mohajerani, A. (2006). Effects of recycled concrete aggregates on properties of asphalt concrete. Resources, Conservation and Recycling, 48(1), 1-12. doi:10.1016/j.resconrec.2005.12.009 es_ES
dc.description.references Pérez, I., Toledano, M., Gallego, J., & Taibo, J. (2007). Propiedades mecánicas de mezclas bituminosas en caliente fabricadas con áridos reciclados de residuos de construcción y demolición. Materiales de Construcción, 57(285). doi:10.3989/mc.2007.v57.i285.36 es_ES
dc.description.references Bengtsson, M., & Evertsson, C. M. (2006). Measuring characteristics of aggregate material from vertical shaft impact crushers. Minerals Engineering, 19(15), 1479-1486. doi:10.1016/j.mineng.2006.08.003 es_ES
dc.description.references Bouquety, M. N., Descantes, Y., Barcelo, L., de Larrard, F., & Clavaud, B. (2007). Experimental study of crushed aggregate shape. Construction and Building Materials, 21(4), 865-872. doi:10.1016/j.conbuildmat.2005.12.013 es_ES
dc.description.references Hınıslıoglu, S. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3-4), 267-271. doi:10.1016/s0167-577x(03)00458-0 es_ES
dc.description.references Sengul, C. E., Aksoy, A., Iskender, E., & Ozen, H. (2012). Hydrated lime treatment of asphalt concrete to increase permanent deformation resistance. Construction and Building Materials, 30, 139-148. doi:10.1016/j.conbuildmat.2011.12.031 es_ES
dc.description.references Zoorob, S. E., & Suparma, L. B. (2000). Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cement and Concrete Composites, 22(4), 233-242. doi:10.1016/s0958-9465(00)00026-3 es_ES
dc.description.references Sengoz, B., & Agar, E. (2007). Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Building and Environment, 42(10), 3621-3628. doi:10.1016/j.buildenv.2006.10.006 es_ES
dc.description.references Gardete, D., Picado-Santos, L., & Capitão, S. (2018). Improving bituminous mixture performance by optimizing the design compaction energy – A cost effective approach for better pavements. Construction and Building Materials, 190, 1173-1181. doi:10.1016/j.conbuildmat.2018.09.169 es_ES
dc.description.references Moreno-Navarro, F., & Rubio-Gámez, M. C. (2016). A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Construction and Building Materials, 113, 927-938. doi:10.1016/j.conbuildmat.2016.03.126 es_ES
dc.description.references Lantsoght, E. O. L., van der Veen, C., & de Boer, A. (2016). Proposal for the fatigue strength of concrete under cycles of compression. Construction and Building Materials, 107, 138-156. doi:10.1016/j.conbuildmat.2016.01.007 es_ES
dc.description.references Ortega, J. J., Ruiz, G., Yu, R. C., Afanador-García, N., Tarifa, M., Poveda, E., … Evangelista, F. (2018). Number of tests and corresponding error in concrete fatigue. International Journal of Fatigue, 116, 210-219. doi:10.1016/j.ijfatigue.2018.06.022 es_ES
dc.description.references Weinberg, K., & Khosravani, M. R. (2018). On the tensile resistance of UHPC at impact. The European Physical Journal Special Topics, 227(1-2), 167-177. doi:10.1140/epjst/e2018-00057-1 es_ES
dc.description.references Khosravani, M. R., Silani, M., & Weinberg, K. (2018). Fracture studies of Ultra-High Performance Concrete using dynamic Brazilian tests. Theoretical and Applied Fracture Mechanics, 93, 302-310. doi:10.1016/j.tafmec.2017.10.001 es_ES
dc.description.references Di Benedetto, H., de La Roche, C., Baaj, H., Pronk, A., & Lundström, R. (2004). Fatigue of bituminous mixtures. Materials and Structures, 37(3), 202-216. doi:10.1007/bf02481620 es_ES
dc.description.references Kakade, V. B., Reddy, M. A., & Reddy, K. S. (2018). Rutting performance of hydrated lime modified bituminous mixes. Construction and Building Materials, 186, 1-10. doi:10.1016/j.conbuildmat.2018.07.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem