- -

EPLS: A novel feature extraction method for migration data clustering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

EPLS: A novel feature extraction method for migration data clustering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Yunliang es_ES
dc.contributor.author Li, Fangyuan es_ES
dc.contributor.author Chen, J es_ES
dc.contributor.author Du, Bo es_ES
dc.contributor.author Choo, Kim-Kwang Raymond es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2020-04-17T12:49:50Z
dc.date.available 2020-04-17T12:49:50Z
dc.date.issued 2017-05 es_ES
dc.identifier.issn 0743-7315 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140896
dc.description.abstract [EN] Nowadays human activity data such as migration data can be easily accumulated by personal devices thanks for GPS. Analysis on migration data is very useful for society decision. Migration data as non-line time series have the properties of higher noise and outliers. Traditional feature extraction methods cannot address this issue very well because of inherent characteristics. Aiming at this problem, a novel numerical feature extraction approach EPLS is proposed. It is an integration of the Ensemble Empirical Mode (EEMD), Principal Component Analysis (PCA) and Least Square (IS) method. The EPLS model includes (1) Mode Decomposition in which EEMD algorithm is applied to the aggregation dataset; (2) Dimension Reduction is carried out for a more significant set of vectors; (3) Least Squares Projection in which all testing data are projected to the obtained vectors. Experimental results show that EPLS can overcome the higher noise and outliers based on migration data clustering. Meanwhile, EPLS feature extraction method can achieve high performance compared with several different clustering methods and distance measures. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Parallel and Distributed Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Migration data es_ES
dc.subject Feature extraction es_ES
dc.subject EPLS es_ES
dc.subject Clustering es_ES
dc.subject Distance measures es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title EPLS: A novel feature extraction method for migration data clustering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jpdc.2016.11.008 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Chen, Y.; Li, F.; Chen, J.; Du, B.; Choo, KR.; Hassan Mohamed, H. (2017). EPLS: A novel feature extraction method for migration data clustering. Journal of Parallel and Distributed Computing. 103:96-103. https://doi.org/10.1016/j.jpdc.2016.11.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jpdc.2016.11.008 es_ES
dc.description.upvformatpinicio 96 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.relation.pasarela S\348698 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem