Mostrar el registro sencillo del ítem
dc.contributor.author | Hoyas, S | es_ES |
dc.contributor.author | Ianiro, Andrea | es_ES |
dc.contributor.author | Pérez Quiles, María Jezabel | es_ES |
dc.contributor.author | Fajardo, Pablo | es_ES |
dc.date.accessioned | 2020-04-17T12:50:17Z | |
dc.date.available | 2020-04-17T12:50:17Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0354-9836 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140909 | |
dc.description.abstract | [EN] This manuscript addresses the linear stability analysis of a thermoconvective problem in an annular domain. The flow is heated from below, with a linear decreasing horizontal temperature profile from the inner to the outer wall. The top surface of the domain is open to the atmosphere and the two lateral walls are adiabatic. The effects of several parameters in the flow are evaluated. Three different values for the ratio of the momentum diffusivity and thermal diffusivity are considered: relatively low randtl number (Pr = 1), intermediate Prandtl number (Pr = 5) and high Prandtl number (ideally Pr → ∞, namely Pr = 50). The thermal boundary condition on the top surface is changed by imposing different values of the Biot number, Bi. The influence of the aspect ratio (Γ) is assessed for through by studying several aspect ratios, Γ. The study has been performed for two values of the Bond number (namely Bo = 5 and 50), estimating the perturbation given by thermocapillarity effects on buoyancy effects. Different kind of competing solutions appear on localized zones of the Γ -Bi plane. The boundaries of these zones are made up of co-dimension two points. Co-dimension two points are found to be function of Bond number, Marangoni number and boundary condition but to be independent on the Prandtl number. | es_ES |
dc.description.sponsorship | The authors would like to thank Mr. Salvador Hoyas for fruitful conversations about the paper. This work was supported by a generous grant of computer time from the super computing center of the UPV. This work has been partially supported by the Spanish R&D National Plan, grant number ESP2013-41052-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | National Library of Serbia | es_ES |
dc.relation.ispartof | Thermal Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Marangoni problem | es_ES |
dc.subject | Thermocapillary convection | es_ES |
dc.subject | Linear stability | es_ES |
dc.subject | Buoyancy effects | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On the onset of instabilities in a Bénard-Marangoni problem in an annular domain with temperature gradient | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2298/TSCI160628277H | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ESP2013-41052-P/ES/PROPULSION ESPACIAL POR PLASMA: SIMULACION Y EXPERIMENTACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hoyas, S.; Ianiro, A.; Pérez Quiles, MJ.; Fajardo, P. (2016). On the onset of instabilities in a Bénard-Marangoni problem in an annular domain with temperature gradient. Thermal Science. 21:S585-S596. https://doi.org/10.2298/TSCI160628277H | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2298/TSCI160628277H | es_ES |
dc.description.upvformatpinicio | S585 | es_ES |
dc.description.upvformatpfin | S596 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.relation.pasarela | S\336079 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |