- -

Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valverde, D. es_ES
dc.contributor.author Garcia Bernabe, Abel es_ES
dc.contributor.author Andrio Balado, Andreu es_ES
dc.contributor.author Garcia-Verdugo, Eduardo es_ES
dc.contributor.author Luis Lafuente, Santiago es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2020-04-17T12:50:31Z
dc.date.available 2020-04-17T12:50:31Z
dc.date.issued 2019-08-28 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140918
dc.description.abstract [EN] The properties of various mixtures of a zwitterionic ionic liquid (ZIs-1) and LiNTf 2, including their conductivity, have been studied showing how they can be adjusted through their molar composition. Conductivity tends to increase with the LiNTf2 content although it presents a minimum at the region close to the eutectic point. These mixtures also provide excellent features as liquid phases for the preparation of composite materials based on crosslinked PILs. The prepared films display excellent and tuneable properties as conducting materials, with conductivities that can be higher than 10 2 S cm 1 above 100 1C. The selected polymeric compositions show very good mechanical properties and thermal stability, even for low crosslinking degrees, along with a suitable flexibility and good transparency. The final properties of the films correlate with the composition of the monomeric mixture used and with that of the ZIs-1:LiNTf2 mixture. es_ES
dc.description.sponsorship Financial support has been provided by MINECO (ENE/2015-69203-R and RTI2018-098233-B-C22) and Generalitat Valenciana (PROMETEO/2016/071). Technical support from the SECIC of the UJI is also acknowledged. DV thanks UNED (Costa Rica) for a predoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cp01903k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098233-B-C22/ES/NUEVOS PROCESOS MULTI-CATALITICOS VERDES BASADOS EN LA TECNOLOGIA DE LOS LIQUIDOS IONICOS: DESDE LAS MATERIAS PRIMAS SENCILLAS HASTA LOS QUIMICOS CON VALOR AÑADIDO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F071/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Valverde, D.; Garcia Bernabe, A.; Andrio Balado, A.; Garcia-Verdugo, E.; Luis Lafuente, S.; Compañ Moreno, V. (2019). Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions. Physical Chemistry Chemical Physics. 21(32):17923-17932. https://doi.org/10.1039/c9cp01903k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cp01903k es_ES
dc.description.upvformatpinicio 17923 es_ES
dc.description.upvformatpfin 17932 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 32 es_ES
dc.relation.pasarela S\396542 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243. doi:10.1039/c1ee01598b es_ES
dc.description.references Arya, A., & Sharma, A. L. (2017). Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 23(3), 497-540. doi:10.1007/s11581-016-1908-6 es_ES
dc.description.references Kalhoff, J., Eshetu, G. G., Bresser, D., & Passerini, S. (2015). Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem, 8(13), 2154-2175. doi:10.1002/cssc.201500284 es_ES
dc.description.references Eftekhari, A., Liu, Y., & Chen, P. (2016). Different roles of ionic liquids in lithium batteries. Journal of Power Sources, 334, 221-239. doi:10.1016/j.jpowsour.2016.10.025 es_ES
dc.description.references Osada, I., de Vries, H., Scrosati, B., & Passerini, S. (2015). Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angewandte Chemie International Edition, 55(2), 500-513. doi:10.1002/anie.201504971 es_ES
dc.description.references Shaplov, A. S., Marcilla, R., & Mecerreyes, D. (2015). Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochimica Acta, 175, 18-34. doi:10.1016/j.electacta.2015.03.038 es_ES
dc.description.references Yoshizawa, M., Hirao, M., Ito-Akita, K., & Ohno, H. (2001). Ion conduction in zwitterionic-type molten salts and their polymers. Journal of Materials Chemistry, 11(4), 1057-1062. doi:10.1039/b101079o es_ES
dc.description.references Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 117(10), 7190-7239. doi:10.1021/acs.chemrev.6b00504 es_ES
dc.description.references Yoshizawa, M., Narita, A., & Ohno, H. (2004). Design of Ionic Liquids for Electrochemical Applications. Australian Journal of Chemistry, 57(2), 139. doi:10.1071/ch03240 es_ES
dc.description.references Yoshizawa, M., & Ohno, H. (2004). Anhydrous proton transport system based on zwitterionic liquid and HTFSI. Chemical Communications, (16), 1828. doi:10.1039/b404137b es_ES
dc.description.references Yoshizawa-Fujita, M., Tamura, T., Takeoka, Y., & Rikukawa, M. (2011). Low-melting zwitterion: effect of oxyethylene units on thermal properties and conductivity. Chem. Commun., 47(8), 2345-2347. doi:10.1039/c0cc03754k es_ES
dc.description.references Paschoal, V. H., Faria, L. F. O., & Ribeiro, M. C. C. (2017). Vibrational Spectroscopy of Ionic Liquids. Chemical Reviews, 117(10), 7053-7112. doi:10.1021/acs.chemrev.6b00461 es_ES
dc.description.references Narita, A., Shibayama, W., & Ohno, H. (2006). Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices. Journal of Materials Chemistry, 16(15), 1475. doi:10.1039/b515287a es_ES
dc.description.references Ohno, H., Yoshizawa-Fujita, M., & Kohno, Y. (2018). Design and properties of functional zwitterions derived from ionic liquids. Physical Chemistry Chemical Physics, 20(16), 10978-10991. doi:10.1039/c7cp08592c es_ES
dc.description.references García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 es_ES
dc.description.references Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085 es_ES
dc.description.references Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b es_ES
dc.description.references Leys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462 es_ES
dc.description.references Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202 es_ES
dc.description.references Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012 es_ES
dc.description.references Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z es_ES
dc.description.references Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028 es_ES
dc.description.references Huber, B., Rossrucker, L., Sundermeyer, J., & Roling, B. (2013). Ion transport properties of ionic liquid-based polyelectrolytes. Solid State Ionics, 247-248, 15-21. doi:10.1016/j.ssi.2013.05.023 es_ES
dc.description.references Green, M. D., Wang, D., Hemp, S. T., Choi, J.-H., Winey, K. I., Heflin, J. R., & Long, T. E. (2012). Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer, 53(17), 3677-3686. doi:10.1016/j.polymer.2012.06.023 es_ES
dc.description.references Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844 es_ES
dc.description.references Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 es_ES
dc.description.references Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F., & Sokolov, A. P. (2008). Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 41(19), 7232-7238. doi:10.1021/ma801155c es_ES
dc.description.references Shaplov, A. S., Ponkratov, D. O., Vlasov, P. S., Lozinskaya, E. I., Gumileva, L. V., Surcin, C., … Vygodskii, Y. S. (2015). Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials. Journal of Materials Chemistry A, 3(5), 2188-2198. doi:10.1039/c4ta05833j es_ES
dc.description.references Dudowicz, J., Freed, K. F., & Douglas, J. F. (2005). The Glass Transition Temperature of Polymer Melts†. The Journal of Physical Chemistry B, 109(45), 21285-21292. doi:10.1021/jp0523266 es_ES
dc.description.references J. C. A. Maxwell , Treatise of Electricity & Magnetism , Dover , New York , 1954 , pp. 310–314 es_ES
dc.description.references Leys, J., Rajesh, R. N., Menon, P. C., Glorieux, C., Longuemart, S., Nockemann, P., … Binnemans, K. (2010). Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. The Journal of Chemical Physics, 133(3), 034503. doi:10.1063/1.3455892 es_ES
dc.description.references Hayamizu, K., Akiba, E., Bando, T., & Aihara, Y. (2002). 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n=3–50) doped with LiN(SO2CF3)2. The Journal of Chemical Physics, 117(12), 5929-5939. doi:10.1063/1.1501279 es_ES
dc.description.references Agrawal, R. C., Kumar, R., & Gupta, R. K. (1998). Estimation of ionic drift velocity on some fast Ag+ ion conducting systems. Materials Science and Engineering: B, 57(1), 46-51. doi:10.1016/s0921-5107(98)00261-x es_ES
dc.description.references G. A. Niklasson , A. K.Jonsson , M.Stromme , Y.Barsoukova and J. R.MacDonald , Impedance Spectroscopy , 2nd edn, Wiley , New York , 2005 , pp. 302–326 es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 es_ES
dc.description.references R. Coelho , Physics of Dielectrics , Elsevier Scientific Publishing Company , New York , 1979 , pp. 97–102 es_ES
dc.description.references Smith Srensen, T., Diaz-Calleja, R., Riande, E., Guzman, J., & Andrio, u. (1997). Contributions from interfacial polarization, conductivity and polymer relaxations to the complex permittivity of a film of poly[(5-ethyl-1,3-dioxan-5-yl)methyl acrylate] containing ionic impurities. Journal of the Chemical Society, Faraday Transactions, 93(14), 2399-2411. doi:10.1039/a701239j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem