- -

Copper-catalysed enantioselective Michael addition of malonic esters to beta-trifluoromethyl-alpha,beta-unsaturated imines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Copper-catalysed enantioselective Michael addition of malonic esters to beta-trifluoromethyl-alpha,beta-unsaturated imines

Mostrar el registro completo del ítem

Espinosa, M.; Herrera, J.; Blay, G.; Cardona, L.; Muñoz Roca, MDC.; Pedro, J. (2017). Copper-catalysed enantioselective Michael addition of malonic esters to beta-trifluoromethyl-alpha,beta-unsaturated imines. Organic & Biomolecular Chemistry. 15(18):3849-3853. https://doi.org/10.1039/c7ob00595d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140957

Ficheros en el ítem

Metadatos del ítem

Título: Copper-catalysed enantioselective Michael addition of malonic esters to beta-trifluoromethyl-alpha,beta-unsaturated imines
Autor: Espinosa, M. Herrera, J. Blay, G. Cardona, L. Muñoz Roca, María Del Carmen Pedro, J.R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Copper triflate-BOX complexes catalyse the enantioselective conjugate addition of methyl malonate to beta-trifluoromethyl-alpha,beta-unsaturated imines to give the corresponding enamines bearing a trifluoromethylated ...[+]
Derechos de uso: Cerrado
Fuente:
Organic & Biomolecular Chemistry. (issn: 1477-0520 )
DOI: 10.1039/c7ob00595d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7ob00595d
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2013-47494-P/ES/NUEVOS RETOS EN EL DESARROLLO DE PROCESOS ENANTIOSELECTIVOS DE FORMACION DE ENLACES C-C MEDIANTE CATALISIS DUAL COOPERATIVA./
Agradecimientos:
Financial support (CTQ2013-47494-P) from the Ministerio de Economia y Competitividad (MINECO-Gobierno de Espana). M. E. acknowledges the Generalitat Valenciana for a predoctoral grant. Access to NMR and MS facilities from ...[+]
Tipo: Artículo

References

I. Ojima , Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwey, Chichester, 2009

G. Theodiridis , in Agrochemical, Archaelogical, Green Chemistry and Water, ed. A. Tressaud, Elsevier, Amsterdam, 2006, vol. 2, p. 121

Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., … Liu, H. (2016). Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chemical Reviews, 116(2), 422-518. doi:10.1021/acs.chemrev.5b00392 [+]
I. Ojima , Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwey, Chichester, 2009

G. Theodiridis , in Agrochemical, Archaelogical, Green Chemistry and Water, ed. A. Tressaud, Elsevier, Amsterdam, 2006, vol. 2, p. 121

Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., … Liu, H. (2016). Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chemical Reviews, 116(2), 422-518. doi:10.1021/acs.chemrev.5b00392

Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., … Liu, H. (2013). Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chemical Reviews, 114(4), 2432-2506. doi:10.1021/cr4002879

Berger, R., Resnati, G., Metrangolo, P., Weber, E., & Hulliger, J. (2011). Organic fluorine compounds: a great opportunity for enhanced materials properties. Chemical Society Reviews, 40(7), 3496. doi:10.1039/c0cs00221f

Purser, S., Moore, P. R., Swallow, S., & Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chem. Soc. Rev., 37(2), 320-330. doi:10.1039/b610213c

Muller, K., Faeh, C., & Diederich, F. (2007). Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science, 317(5846), 1881-1886. doi:10.1126/science.1131943

Nie, J., Guo, H.-C., Cahard, D., & Ma, J.-A. (2011). Asymmetric Construction of Stereogenic Carbon Centers Featuring a Trifluoromethyl Group from Prochiral Trifluoromethylated Substrates. Chemical Reviews, 111(2), 455-529. doi:10.1021/cr100166a

Cahard, D., Xu, X., Couve-Bonnaire, S., & Pannecoucke, X. (2010). Fluorine & chirality: how to create a nonracemic stereogenic carbon–fluorine centre? Chem. Soc. Rev., 39(2), 558-568. doi:10.1039/b909566g

Ma, J.-A., & Cahard, D. (2008). Update 1 of: Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chemical Reviews, 108(9), PR1-PR43. doi:10.1021/cr800221v

Ma, J.-A., & Cahard, D. (2004). Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chemical Reviews, 104(12), 6119-6146. doi:10.1021/cr030143e

Brown, S. P., Dransfield, P. J., Vimolratana, M., Jiao, X., Zhu, L., Pattaropong, V., … Houze, J. B. (2012). Discovery of AM-1638: A Potent and Orally Bioavailable GPR40/FFA1 Full Agonist. ACS Medicinal Chemistry Letters, 3(9), 726-730. doi:10.1021/ml300133f

Kuo, G.-H., Rano, T., Pelton, P., Demarest, K. T., Gibbs, A. C., Murray, W. V., … Connelly, M. A. (2009). Design, Synthesis, and Biological Evaluation of (2R,αS)-3,4-Dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)-phenyl]-α-(trifluoromethyl)-1(2H)-quinolineethanol as Potent and Orally Active Cholesteryl Ester Transfer Protein Inhibitor. Journal of Medicinal Chemistry, 52(6), 1768-1772. doi:10.1021/jm801319d

Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., … Beyer, C. (2007). Synthesis and SAR of [1,2,4]Triazolo[1,5-a]pyrimidines, a Class of Anticancer Agents with a Unique Mechanism of Tubulin Inhibition. Journal of Medicinal Chemistry, 50(2), 319-327. doi:10.1021/jm060717i

Caron, S., Do, N. M., Sieser, J. E., Arpin, P., & Vazquez, E. (2007). Process Research and Development of an NK-1 Receptor Antagonist. Enantioselective Trifluoromethyl Addition to a Ketone in the Preparation of a Chiral Isochroman. Organic Process Research & Development, 11(6), 1015-1024. doi:10.1021/op7001886

Dale, J. A., Dull, D. L., & Mosher, H. S. (1969). .alpha.-Methoxy-.alpha.-trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. The Journal of Organic Chemistry, 34(9), 2543-2549. doi:10.1021/jo01261a013

Cook, A. M., & Wolf, C. (2016). Efficient Access to Multifunctional Trifluoromethyl Alcohols through Base-Free Catalytic Asymmetric C−C Bond Formation with Terminal Ynamides. Angewandte Chemie International Edition, 55(8), 2929-2933. doi:10.1002/anie.201510910

Jing, Z., Bai, X., Chen, W., Zhang, G., Zhu, B., & Jiang, Z. (2016). Organocatalytic Enantioselective Vinylogous Aldol Reaction of Allyl Aryl Ketones to Activated Acyclic Ketones. Organic Letters, 18(2), 260-263. doi:10.1021/acs.orglett.5b03412

Wang, C., Qin, J., Shen, X., Riedel, R., Harms, K., & Meggers, E. (2015). Asymmetric Radical-Radical Cross-Coupling through Visible-Light-Activated Iridium Catalysis. Angewandte Chemie International Edition, 55(2), 685-688. doi:10.1002/anie.201509524

Lv, J., Zhang, Q., Zhong, X., & Luo, S. (2015). Asymmetric Latent Carbocation Catalysis with Chiral Trityl Phosphate. Journal of the American Chemical Society, 137(49), 15576-15583. doi:10.1021/jacs.5b11085

Aikawa, K., Kondo, D., Honda, K., & Mikami, K. (2015). Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols. Chemistry - A European Journal, 21(49), 17565-17569. doi:10.1002/chem.201503631

Montesinos-Magraner, M., Vila, C., Blay, G., Fernández, I., Muñoz, M. C., & Pedro, J. R. (2015). Organocatalytic Enantioselective Friedel-Crafts Alkylation of 1-Naphthol Derivatives and Activated Phenols with Ethyl Trifluoropyruvate. Advanced Synthesis & Catalysis, 357(14-15), 3047-3051. doi:10.1002/adsc.201500548

Ren, H., Wang, P., Wang, L., & Tang, Y. (2015). Catalytic Asymmetric Synthesis of 3-Hydroxy-3-trifluoromethyl Benzofuranones via Tandem Friedel–Crafts/Lactonization Reaction. Organic Letters, 17(19), 4886-4889. doi:10.1021/acs.orglett.5b02440

Sánchez-Díez, E., Fernández, M., Uria, U., Reyes, E., Carrillo, L., & Vicario, J. L. (2015). Enantioselective Synthesis of Tertiary Propargylic Alcohols under N-Heterocyclic Carbene Catalysis. Chemistry - A European Journal, 21(23), 8384-8388. doi:10.1002/chem.201501044

Blay, G., Fernández, I., Monleón, A., Pedro, J. R., & Vila, C. (2009). Enantioselective Zirconium-Catalyzed Friedel−Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Organic Letters, 11(2), 441-444. doi:10.1021/ol802509m

Lou, H., Wang, Y., Jin, E., & Lin, X. (2016). Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters. The Journal of Organic Chemistry, 81(5), 2019-2026. doi:10.1021/acs.joc.5b02848

Zhou, D., Huang, Z., Yu, X., Wang, Y., Li, J., Wang, W., & Xie, H. (2015). A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel–Crafts Reaction of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. Organic Letters, 17(22), 5554-5557. doi:10.1021/acs.orglett.5b02668

Zhang, S., Li, L., Hu, Y., Li, Y., Yang, Y., Zha, Z., & Wang, Z. (2015). Highly Enantioselective Construction of Fluoroalkylated Quaternary Stereocenters via Organocatalytic Dehydrated Mannich Reaction of Unprotected Hemiaminals with Ketones. Organic Letters, 17(20), 5036-5039. doi:10.1021/acs.orglett.5b02514

Zhao, M.-X., Bi, H.-L., Jiang, R.-H., Xu, X.-W., & Shi, M. (2014). Cinchona Alkaloid Squaramide/AgOAc Cooperatively Catalyzed Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction of Isocyanoacetates and Cyclic Trifluoromethyl Ketimines. Organic Letters, 16(17), 4566-4569. doi:10.1021/ol502123z

Chen, Y.-J., Chen, Y.-H., Feng, C.-G., & Lin, G.-Q. (2014). Enantioselective Rhodium-Catalyzed Arylation of Cyclic N-Sulfamidate Alkylketimines: A New Access to Chiral β-Alkyl-β-aryl Amino Alcohols. Organic Letters, 16(12), 3400-3403. doi:10.1021/ol501464e

Huang, G., Yin, Z., & Zhang, X. (2013). Construction of Optically Active Quaternary Propargyl Amines by Highly Enantioselective Zinc/BINOL-Catalyzed Alkynylation of Ketoimines. Chemistry - A European Journal, 19(36), 11992-11998. doi:10.1002/chem.201301479

Zhang, F.-G., Zhu, X.-Y., Li, S., Nie, J., & Ma, J.-A. (2012). Highly enantioselective organocatalytic Strecker reaction of cyclic N-acyl trifluoromethylketimines: synthesis of anti-HIV drug DPC 083. Chemical Communications, 48(94), 11552. doi:10.1039/c2cc36307k

P. Perlmutter , Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, 1992

A. Alexakis , The Conjugate Synthesis, Pergamon, Oxford, 1992

A. Alexakis , The Conjugate Addition Reaction, in Transition Metals for Organic Synthesis, ed. M. Beller and C. Bolm, Wiley-VCH, Weinheim, 2004, vol. 1, p. 553

M. Yamaguchi , Catalytic Conjugate Addition of Stabilized Carbanions, in Comprehensive Asymmetric Catalysis, ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer-Verlag, 1999, vol. 3, p. 1121

Csákÿ, A. G., Herrán, G. de la, & Murcia, M. C. (2010). Conjugate addition reactions of carbon nucleophiles to electron-deficient dienes. Chemical Society Reviews, 39(11), 4080. doi:10.1039/b924486g

B. N. Nguyen , K. K.Hii, W.Szymanski and D. B.Janssen, Conjugate Addition Reactions, in Science of Synthesis, Stereoselective Synthesis, ed. J. G. De Vries, G. A. Molander and D. A. Evans, Georg Thieme-Verlag, Sttutgart, 2011, vol. 1, p. 571

Howell, G. P. (2012). Asymmetric and Diastereoselective Conjugate Addition Reactions: C–C Bond Formation at Large Scale. Organic Process Research & Development, 16(7), 1258-1272. doi:10.1021/op200381w

Zhu, Y., Dong, Z., Cheng, X., Zhong, X., Liu, X., Lin, L., … Wang, R. (2016). Asymmetric Synthesis of CF3- and Indole-Containing Thiochromanes via a Squaramide-Catalyzed Michael–Aldol Reaction. Organic Letters, 18(15), 3546-3549. doi:10.1021/acs.orglett.6b01498

Yang, G.-J., Du, W., & Chen, Y.-C. (2016). Construction of Furan Derivatives with a Trifluoromethyl Stereogenic Center: Enantioselective Friedel–Crafts Alkylations via Formal Trienamine Catalysis. The Journal of Organic Chemistry, 81(20), 10056-10061. doi:10.1021/acs.joc.6b01950

Blay, G., Fernández, I., Muñoz, M. C., Pedro, J. R., & Vila, C. (2010). Synthesis of Functionalized Indoles with a Trifluoromethyl-Substituted Stereogenic Tertiary Carbon Atom Through an Enantioselective Friedel-Crafts Alkylation with β-Trifluoromethyl-α,β-enones. Chemistry - A European Journal, 16(30), 9117-9122. doi:10.1002/chem.201000568

Kwiatkowski, P., Cholewiak, A., & Kasztelan, A. (2014). Efficient and Highly Enantioselective Construction of Trifluoromethylated Quaternary Stereogenic Centers via High-Pressure Mediated Organocatalytic Conjugate Addition of Nitromethane to β,β-Disubstituted Enones. Organic Letters, 16(22), 5930-5933. doi:10.1021/ol502941d

Kawai, H., Yuan, Z., Kitayama, T., Tokunaga, E., & Shibata, N. (2013). Efficient Access to Trifluoromethyl Diarylpyrrolines and their N-Oxides through Enantioselective Conjugate Addition of Nitromethane to β,β-Disubstituted Enones. Angewandte Chemie International Edition, 52(21), 5575-5579. doi:10.1002/anie.201301123

Kawai, H., Kitayama, T., Tokunaga, E., Matsumoto, T., Sato, H., Shiro, M., & Shibata, N. (2012). Catalytic enantioselective synthesis of β-trifluoromethyl pyrrolines. Chemical Communications, 48(34), 4067. doi:10.1039/c2cc18049a

Sanz-Marco, A., Blay, G., Muñoz, M. C., & Pedro, J. R. (2015). Highly enantioselective copper(i)-catalyzed conjugate addition of 1,3-diynes to α,β-unsaturated trifluoromethyl ketones. Chemical Communications, 51(43), 8958-8961. doi:10.1039/c5cc01676b

Sanz-Marco, A., Blay, G., Vila, C., & Pedro, J. R. (2016). Catalytic Enantioselective Conjugate Alkynylation of β-Aryl-β-trifluoromethyl Enones Constructing Propargylic All-Carbon Quaternary Stereogenic Centers. Organic Letters, 18(15), 3538-3541. doi:10.1021/acs.orglett.6b01494

Zhao, M.-X., Zhu, H.-K., Dai, T.-L., & Shi, M. (2015). Cinchona Alkaloid Squaramide-Catalyzed Asymmetric Michael Addition of α-Aryl Isocyanoacetates to β-Trifluoromethylated Enones and Its Applications in the Synthesis of Chiral β-Trifluoromethylated Pyrrolines. The Journal of Organic Chemistry, 80(22), 11330-11338. doi:10.1021/acs.joc.5b01829

Davies, A. T., Taylor, J. E., Douglas, J., Collett, C. J., Morrill, L. C., Fallan, C., … Smith, A. D. (2013). Stereospecific Asymmetric N-Heterocyclic Carbene (NHC)-Catalyzed Redox Synthesis of Trifluoromethyl Dihydropyranones and Mechanistic Insights. The Journal of Organic Chemistry, 78(18), 9243-9257. doi:10.1021/jo401433q

Morigaki, A., Tanaka, T., Miyabe, T., Ishihara, T., & Konno, T. (2013). Rhodium(i)-catalyzed 1,4-conjugate arylation toward β-fluoroalkylated electron-deficient alkenes: a new entry to a construction of a tertiary carbon center possessing a fluoroalkyl group. Org. Biomol. Chem., 11(4), 586-595. doi:10.1039/c2ob26708j

Xu, W., Shen, X., Ma, Q., Gong, L., & Meggers, E. (2016). Restricted Conformation of a Hydrogen Bond Mediated Catalyst Enables the Highly Efficient Enantioselective Construction of an All-Carbon Quaternary Stereocenter. ACS Catalysis, 6(11), 7641-7646. doi:10.1021/acscatal.6b02080

Wu, H., Liu, R.-R., Shen, C., Zhang, M.-D., Gao, J., & Jia, Y.-X. (2015). Enantioselective Friedel–Crafts reaction of 4,7-dihydroindoles with β-CF3-β-disubstituted nitroalkenes. Organic Chemistry Frontiers, 2(2), 124-126. doi:10.1039/c4qo00265b

Gao, J.-R., Wu, H., Xiang, B., Yu, W.-B., Han, L., & Jia, Y.-X. (2013). Highly Enantioselective Construction of Trifluoromethylated All-Carbon Quaternary Stereocenters via Nickel-Catalyzed Friedel–Crafts Alkylation Reaction. Journal of the American Chemical Society, 135(8), 2983-2986. doi:10.1021/ja400650m

Hou, X., Ma, H., Zhang, Z., Xie, L., Qin, Z., & Fu, B. (2016). An efficient approach for the construction of trifluoromethylated all-carbon quaternary stereocenters: enantioselective Ni(ii)-catalyzed Michael addition of 2-acetyl azaarene to β,β-disubstituted nitroalkenes. Chemical Communications, 52(7), 1470-1473. doi:10.1039/c5cc08480f

Ma, C.-H., Kang, T.-R., He, L., & Liu, Q.-Z. (2014). Highly Enantioselective Michael Addition of Malonates to β-CF3-β-(3-Indolyl)nitroalkenes: Construction of Trifluoromethylated All-Carbon Quaternary Stereogenic Centres. European Journal of Organic Chemistry, 2014(19), 3981-3985. doi:10.1002/ejoc.201402243

Zhao, Y., Wang, X.-J., Lin, Y., Cai, C.-X., & Liu, J.-T. (2014). Highly enantioselective direct Michael addition of 1,3-dicarbonyl compounds to β-fluoroalkyl-α-nitroalkenes. Tetrahedron, 70(15), 2523-2528. doi:10.1016/j.tet.2014.02.062

Lalonde, M. P., Chen, Y., & Jacobsen, E. N. (2006). A Chiral Primary Amine Thiourea Catalyst for the Highly Enantioselective Direct Conjugate Addition of α,α-Disubstituted Aldehydes to Nitroalkenes. Angewandte Chemie International Edition, 45(38), 6366-6370. doi:10.1002/anie.200602221

Shimizu, M., Hachiya, I., & Mizota, I. (2009). Conjugated imines and iminium salts as versatile acceptors of nucleophiles. Chemical Communications, (8), 874. doi:10.1039/b814930e

Huang, Y., Chew, R. J., Pullarkat, S. A., Li, Y., & Leung, P.-H. (2012). Asymmetric Synthesis of Enaminophosphines via Palladacycle-Catalyzed Addition of Ph2PH to α,β-Unsaturated Imines. The Journal of Organic Chemistry, 77(16), 6849-6854. doi:10.1021/jo300893s

Solé, C., Whiting, A., Gulyás, H., & Fernández, E. (2011). Highly Enantio- and Diastereoselective Synthesis of γ-Amino Alcohols from α,β-Unsaturated Imines through a One-Pot β-Boration/Reduction/Oxidation Sequence. Advanced Synthesis & Catalysis, 353(2-3), 376-384. doi:10.1002/adsc.201000842

Solé, C., Tatla, A., Mata, J. A., Whiting, A., Gulyás, H., & Fernández, E. (2011). Catalytic 1,3-Difunctionalisation of Organic Backbones through a Highly Stereoselective, One-Pot, Boron Conjugate-Addition/Reduction/Oxidation Process. Chemistry - A European Journal, 17(50), 14248-14257. doi:10.1002/chem.201102081

Esquivias, J., Arrayás, R. G., & Carretero, J. C. (2005). Copper-Catalyzed Enantioselective Conjugate Addition of Dialkylzinc Reagents to (2-Pyridyl)sulfonyl Imines of Chalcones. The Journal of Organic Chemistry, 70(18), 7451-7454. doi:10.1021/jo0511602

Palacios, F., & Vicario, J. (2006). Copper-Catalyzed Asymmetric Conjugate Addition of Diethylzinc to α,β-Unsaturated Imines Derived from α-Aminoacids. Enantioselective Synthesis of γ-Substituted α-Dehydroaminoesters. Organic Letters, 8(23), 5405-5408. doi:10.1021/ol062294k

Palacios, F., & Vicario, J. (2007). Enantioselective Synthesis of γ-Functionalized α-Dehydroamino Esters. Synthesis, 2007(24), 3923-3925. doi:10.1055/s-2007-983840

Espinosa, M., Blay, G., Cardona, L., & Pedro, J. R. (2013). Asymmetric Conjugate Addition of Malonate Esters to α,β-UnsaturatedN-Sulfonyl Imines: An Expeditious Route to Chiral δ-Aminoesters and Piperidones. Chemistry - A European Journal, 19(44), 14861-14866. doi:10.1002/chem.201302687

Espinosa, M., Blay, G., Cardona, L., & Pedro, J. R. (2013). Corrigendum: Asymmetric Conjugate Addition of Malonate Esters to α,β-UnsaturatedN-Sulfonyl Imines: An Expeditious Route to Chiral δ-Aminoesters and Piperidones. Chemistry - A European Journal, 19(52), 17632-17632. doi:10.1002/chem.201304285

Westmeier, J., & von Zezschwitz, P. (2014). Copper-catalyzed enantioselective 1,4-addition of alkyl groups to N-sulfonyl imines. Chem. Commun., 50(100), 15897-15900. doi:10.1039/c4cc07134d

Kitanosono, T., Xu, P., Isshiki, S., Zhu, L., & Kobayashi, S. (2014). Cu(ii)-Catalyzed asymmetric boron conjugate addition to α,β-unsaturated imines in water. Chem. Commun., 50(66), 9336-9339. doi:10.1039/c4cc04062g

Izquierdo, J., & Pericàs, M. A. (2015). A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 6(1), 348-356. doi:10.1021/acscatal.5b02121

Simal, C., Lebl, T., Slawin, A. M. Z., & Smith, A. D. (2012). Dihydropyridones: Catalytic Asymmetric Synthesis, N- to C-Sulfonyl Transfer, and Derivatizations. Angewandte Chemie International Edition, 51(15), 3653-3657. doi:10.1002/anie.201109061

Palacios, F., Ochoa de Retana, A. M., Pascual, S., de Trocóniz, G. F., & Ezpeleta, J. M. (2010). Fluoroalkylated α,β-Unsaturated Imines: Efficient and Versatile Substrates for the Synthesis of Fluorinated Vinylogous β-Amino Esters and 3,4-Dihydropyridin-2-ones. European Journal of Organic Chemistry, 2010(34), 6618-6626. doi:10.1002/ejoc.201000948

Espinosa, M., García-Ortiz, A., Blay, G., Cardona, L., Muñoz, M. C., & Pedro, J. R. (2016). E,Z-Stereodivergent synthesis of N-tosyl α,β-dehydroamino esters via a Mukaiyama–Michael addition. RSC Advances, 6(19), 15655-15659. doi:10.1039/c5ra27354d

Qiu, L., Gao, L., Tang, J., Wang, D., Guo, X., Liu, S., … Hu, W. (2014). Regio- and Diastereoselective Construction of α-Hydroxy-δ-amino Ester Derivatives via 1,4-Conjugate Addition of β,γ-Unsaturated N-Sulfonylimines. The Journal of Organic Chemistry, 79(9), 4142-4147. doi:10.1021/jo500176g

Fernández de Trocóniz, G., Ochoa de Retana, A. M., Pascual, S., Ezpeleta, J. M., & Palacios, F. (2013). Regioselective Conjugate Addition of Nitriles to α,β-Unsaturated Imines: Synthesis of Fluorinated Primary Enamines and 2-Aminopyridine Derivatives. European Journal of Organic Chemistry, 2013(25), 5614-5620. doi:10.1002/ejoc.201300580

Liu, K., Chang, X., & Wang, C.-J. (2016). Nickel(II)-Catalyzed Cascade Vinylogous Mukaiyama 1,6-Michael/Michael Addition of 2-Silyloxyfuran with N-Sulfonyl-1-aza-1,3-dienes: Access to Fused Piperidine/Butyrolactone Skeletons. Organic Letters, 18(24), 6288-6291. doi:10.1021/acs.orglett.6b03150

K. Uneyama , Recent Advances in the Syntheses of Fluorinated Amino Acids, in Fluorine in Medicinal Chemistry and Chemical Biology, ed. I. Ojima, Wiley-Blackwey, Chichester, 2009, p. 213

Desimoni, G., Faita, G., & Jørgensen, K. A. (2006). C2-Symmetric Chiral Bis(Oxazoline) Ligands in Asymmetric Catalysis. Chemical Reviews, 106(9), 3561-3651. doi:10.1021/cr0505324

Desimoni, G., Faita, G., & Jørgensen, K. A. (2011). Update 1 of:C2-Symmetric Chiral Bis(oxazoline) Ligands in Asymmetric Catalysis. Chemical Reviews, 111(11), PR284-PR437. doi:10.1021/cr100339a

Hasegawa, M., Ono, F., & Kanemasa, S. (2008). Molecular sieves 4A work to mediate the catalytic metal enolization of nucleophile precursors: application to catalyzed enantioselective Michael addition reactions. Tetrahedron Letters, 49(35), 5220-5223. doi:10.1016/j.tetlet.2008.05.156

Kubota, Y., Ikeya, H., Sugi, Y., Yamada, T., & Tatsumi, T. (2006). Organic–inorganic hybrid catalysts based on ordered porous structures for Michael reaction. Journal of Molecular Catalysis A: Chemical, 249(1-2), 181-190. doi:10.1016/j.molcata.2006.01.015

Abbaraju, S., Bhanushali, M., & Zhao, C.-G. (2011). Quinidine thiourea-catalyzed enantioselective synthesis of β-nitrophosphonates: beneficial effects of molecular sieves. Tetrahedron, 67(39), 7479-7484. doi:10.1016/j.tet.2011.07.059

Chen, D., Chen, Z., Xiao, X., Yang, Z., Lin, L., Liu, X., & Feng, X. (2009). Highly Enantioselective Michael Addition of Malonate Derivatives to Enones Catalyzed by anN,N′-Dioxide-Scandium(III) Complex. Chemistry - A European Journal, 15(28), 6807-6810. doi:10.1002/chem.200901157

Jiang, J.-J., Huang, J., Wang, D., Yuan, Z.-L., Zhao, M.-X., Wang, F.-J., & Shi, M. (2010). Cu(I)-catalyzed asymmetric chlorination of β-keto esters in the presence of chiral phosphine-schiff base type ligands. Chirality, 23(3), 272-276. doi:10.1002/chir.20913

Kakinuma, T., Chiba, R., & Oriyama, T. (2008). Michael Addition of Active Methylene Compounds to α,β-Unsaturated Carbonyl Compounds under the Influence of Molecular Sieves in Dimethyl Sulfoxide. Chemistry Letters, 37(12), 1204-1205. doi:10.1246/cl.2008.1204

Palomo, C., Pazos, R., Oiarbide, M., & García, J. M. (2006). Catalytic Enantioselective Conjugate Addition of Nitromethane to α′-Hydroxy Enones as Surrogates of α,β-Unsaturated Carboxylic Acids and Aldehydes. Advanced Synthesis & Catalysis, 348(10-11), 1161-1164. doi:10.1002/adsc.200606076

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem