- -

The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berenguer Betrián, Raúl es_ES
dc.contributor.author Quijada, C. es_ES
dc.contributor.author Morallón, Emilia es_ES
dc.date.accessioned 2020-04-24T07:12:51Z
dc.date.available 2020-04-24T07:12:51Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141423
dc.description "This is the peer reviewed version of the following article: The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes, which has been published in final form at https://doi.org/10.1002/celc.201801632. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The catalytic behavior of metal oxides for oxidative reactions is generally classified into active or non-active, depending on whether surface redox species participate or not. In the case of mixed metal oxides, however, this simplified scenario may be more complex. Non-active oxides containing electroactive metal species, like Pt- and/or Ru-doped SnO2 electrodes, are promising anode materials for the electrochemical treatment of waste-waters. This work analyzes the effect of Pt and Ru species on the nature of the electro-oxidative catalytic response of Ti/SnO2 anodes. For this purpose, the electro-oxidation of phenol and the competing oxygen evolution reaction (OER) in NaOH have been chosen as model reactions. The different electrodes and reactions were characterized by cyclic voltammetry, electro- chemical impedance spectroscopy, and Tafel measurements. The obtained results reveal that both Pt and Ru introduce solid-state redox processes and catalyze the OER and the phenol oxidation onto Ti/SnO2-based electrodes. Nevertheless, the dopants induce quite different active behaviors in the mixed oxides. Pt practically does not affect the OER mechanism, but enhances its kinetics, so its electrocatalytic activity is associated with a specific adsorption of hydroxyl anions or phenolate on Pt sites, without participation of the irreversible Pt/PtOx couple (i.e. a "non-redox-active" behavior). On the contrary, Ru species involve various and highly reversible redox processes that accelerate and modify the rate-determining step of the OER, and that actively mediate in the phenol oxidation. es_ES
dc.description.sponsorship Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-201420012) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemElectroChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pt-doped tin dioxide electrodes es_ES
dc.subject Ru-doped tin dioxide electrodes es_ES
dc.subject DSA es_ES
dc.subject Electrocatalysis es_ES
dc.subject Impedance spectroscopy es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/celc.201801632 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76595-R/ES/NUEVAS ESTRATEGIAS DE FUNCIONALIZACION ELECTROQUIMICA DE MATERIALES CARBONOSOS NANOESTRUCTURADOS PARA LA REDUCCION DE OXIGENO Y BIOSENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-20012/ES/IJCI-2014-20012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Berenguer Betrián, R.; Quijada, C.; Morallón, E. (2019). The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes. ChemElectroChem. 6(4):1057-1068. https://doi.org/10.1002/celc.201801632 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/celc.201801632 es_ES
dc.description.upvformatpinicio 1057 es_ES
dc.description.upvformatpfin 1068 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2196-0216 es_ES
dc.relation.pasarela S\378715 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references K. Rajeshwar J. G. Ibanez (Eds.) in Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement Academic Press Inc. San Diego 1997. es_ES
dc.description.references Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h es_ES
dc.description.references Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. doi:10.1016/j.apcatb.2014.11.016 es_ES
dc.description.references Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319 es_ES
dc.description.references Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1 es_ES
dc.description.references Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrochemical Incineration in the Presence of Halides. Electrochemical and Solid-State Letters, 8(11), D35. doi:10.1149/1.2042628 es_ES
dc.description.references Scialdone, O., Galia, A., Guarisco, C., Randazzo, S., & Filardo, G. (2008). Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters. Electrochimica Acta, 53(5), 2095-2108. doi:10.1016/j.electacta.2007.09.007 es_ES
dc.description.references Scialdone, O., Randazzo, S., Galia, A., & Filardo, G. (2009). Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2–Ta2O5 (DSA-O2) anode. Electrochimica Acta, 54(4), 1210-1217. doi:10.1016/j.electacta.2008.08.064 es_ES
dc.description.references Scialdone, O. (2009). Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochimica Acta, 54(26), 6140-6147. doi:10.1016/j.electacta.2009.05.066 es_ES
dc.description.references Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005 es_ES
dc.description.references Kapałka, A., Fóti, G., & Comninellis, C. (2007). Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry, 38(1), 7-16. doi:10.1007/s10800-007-9365-6 es_ES
dc.description.references Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045 es_ES
dc.description.references Kapałka, A., Baltruschat, H., & Comninellis, C. (2011). Electrochemical Oxidation of Organic Compounds Induced by Electro-Generated Free Hydroxyl Radicals on BDD Electrodes. Synthetic Diamond Films, 237-260. doi:10.1002/9781118062364.ch10 es_ES
dc.description.references Martínez-Huitle, C. A., Quiroz, M. A., Comninellis, C., Ferro, S., & Battisti, A. D. (2004). Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochimica Acta, 50(4), 949-956. doi:10.1016/j.electacta.2004.07.035 es_ES
dc.description.references Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research, 43(8), 2260-2272. doi:10.1016/j.watres.2009.02.014 es_ES
dc.description.references S. Trasatti (Ed.) inStudies in Physical and Theoretical Chemistry. Vol. 11. Electrodes of Conductive Metallic oxides. Part. A-B Elsevier Science Publishers Amsterdam 1980/1981. es_ES
dc.description.references Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8 es_ES
dc.description.references Ch. Comninellis G. Chen es_ES
dc.description.references Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 507(1-2), 206-214. doi:10.1016/s0022-0728(01)00398-9 es_ES
dc.description.references Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2 es_ES
dc.description.references Scialdone, O., Guarisco, C., & Galia, A. (2011). Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments. Electrochimica Acta, 58, 463-473. doi:10.1016/j.electacta.2011.09.073 es_ES
dc.description.references Polcaro, A. M., Mascia, M., Palmas, S., & Vacca, A. (2002). Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process. Industrial & Engineering Chemistry Research, 41(12), 2874-2881. doi:10.1021/ie010669u es_ES
dc.description.references Subba Rao, A. N., & Venkatarangaiah, V. T. (2013). Metal oxide-coated anodes in wastewater treatment. Environmental Science and Pollution Research, 21(5), 3197-3217. doi:10.1007/s11356-013-2313-6 es_ES
dc.description.references Wu, W., Huang, Z.-H., & Lim, T.-T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480, 58-78. doi:10.1016/j.apcata.2014.04.035 es_ES
dc.description.references Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361 es_ES
dc.description.references Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037 es_ES
dc.description.references Berenguer, R., Valdés-Solís, T., Fuertes, A. B., Quijada, C., & Morallón, E. (2008). Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 155(7), K110. doi:10.1149/1.2917210 es_ES
dc.description.references Ch. Comninellis Electrochemical treatment of waste water containing phenol Trans. IChemE1992 70 219–224. es_ES
dc.description.references Stucki, S., K�tz, R., Carcer, B., & Suter, W. (1991). Electrochemical waste water treatment using high overvoltage anodes Part II: Anode performance and applications. Journal of Applied Electrochemistry, 21(2), 99-104. doi:10.1007/bf01464288 es_ES
dc.description.references Comninellis, C., & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2, anodes. Journal of Applied Electrochemistry, 23(2). doi:10.1007/bf00246946 es_ES
dc.description.references Rodgers, J. D., Jedral, W., & Bunce, N. J. (1999). Electrochemical Oxidation of Chlorinated Phenols. Environmental Science & Technology, 33(9), 1453-1457. doi:10.1021/es9808189 es_ES
dc.description.references Montilla, F., Morallón, E., & Vázquez, J. L. (2005). Evaluation of the Electrocatalytic Activity of Antimony-Doped Tin Dioxide Anodes toward the Oxidation of Phenol in Aqueous Solutions. Journal of The Electrochemical Society, 152(10), B421. doi:10.1149/1.2013047 es_ES
dc.description.references CORREA-LOZANO, B., COMNINELLIS, C., & BATTISTI, A. D. (1997). Journal of Applied Electrochemistry, 27(8), 970-974. doi:10.1023/a:1018414005000 es_ES
dc.description.references VICENT, F., MORALLO´N, E., QUIJADA, C., L.VA´ZQUEZ, J., ALDAZ, A., & CASES, F. (1998). Journal of Applied Electrochemistry, 28(6), 607-612. doi:10.1023/a:1003250118996 es_ES
dc.description.references Forti, J. C., Olivi, P., & de Andrade, A. R. (2001). Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 47(6), 913-920. doi:10.1016/s0013-4686(01)00791-5 es_ES
dc.description.references Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480b es_ES
dc.description.references Berenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2008). Origin of the Deactivation of Spinel CuxCo3−xO4/Ti Anodes Prepared by Thermal Decomposition. The Journal of Physical Chemistry C, 112(43), 16945-16952. doi:10.1021/jp804403x es_ES
dc.description.references Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034 es_ES
dc.description.references Berenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2014). Pt- and Ru-Doped SnO2–Sb Anodes with High Stability in Alkaline Medium. ACS Applied Materials & Interfaces, 6(24), 22778-22789. doi:10.1021/am506958k es_ES
dc.description.references Berenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2016). Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO 2 -Sb anodes in an alkaline medium. Applied Catalysis B: Environmental, 199, 394-404. doi:10.1016/j.apcatb.2016.06.038 es_ES
dc.description.references Berenguer, R., Quijada, C., & Morallón, E. (2009). Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochimica Acta, 54(22), 5230-5238. doi:10.1016/j.electacta.2009.04.016 es_ES
dc.description.references A. J. Bard L. R. Faulkner (Eds.) inElectrochemical Methods John Wiley& Sons New York 1980. es_ES
dc.description.references Montilla, F., Morallón, E., De Battisti, A., Benedetti, A., Yamashita, H., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 2. XRD and EXAFS Characterization. The Journal of Physical Chemistry B, 108(16), 5044-5050. doi:10.1021/jp0374814 es_ES
dc.description.references He, Y., Li, H., Zou, X., Bai, N., Cao, Y., Cao, Y., … Li, G.-D. (2017). Platinum dioxide activated porous SnO2 microspheres for the detection of trace formaldehyde at low operating temperature. Sensors and Actuators B: Chemical, 244, 475-481. doi:10.1016/j.snb.2017.01.014 es_ES
dc.description.references Santos, A. L., Profeti, D., & Olivi, P. (2005). Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochimica Acta, 50(13), 2615-2621. doi:10.1016/j.electacta.2004.11.006 es_ES
dc.description.references Doyle, R. L., & Lyons, M. E. G. (2016). The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. Photoelectrochemical Solar Fuel Production, 41-104. doi:10.1007/978-3-319-29641-8_2 es_ES
dc.description.references Lyons, M. E. G., & Floquet, S. (2011). Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Physical Chemistry Chemical Physics, 13(12), 5314. doi:10.1039/c0cp02875d es_ES
dc.description.references Rochefort, D., Dabo, P., Guay, D., & Sherwood, P. M. A. (2003). XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochimica Acta, 48(28), 4245-4252. doi:10.1016/s0013-4686(03)00611-x es_ES
dc.description.references Gaudet, J., Tavares, A. C., Trasatti, S., & Guay, D. (2005). Physicochemical Characterization of Mixed RuO2−SnO2Solid Solutions. Chemistry of Materials, 17(6), 1570-1579. doi:10.1021/cm048129l es_ES
dc.description.references Conway, B. E. (1999). Electrochemical Supercapacitors. doi:10.1007/978-1-4757-3058-6 es_ES
dc.description.references Ribeiro, J., & de Andrade, A. R. (2006). Investigation of the electrical properties, charging process, and passivation of RuO2–Ta2O5 oxide films. Journal of Electroanalytical Chemistry, 592(2), 153-162. doi:10.1016/j.jelechem.2006.05.004 es_ES
dc.description.references Lodi, G., Zucchini, G., De Battisti, A., Sivieri, E., & Trasatti, S. (1978). On some debated aspects of the behaviour of RuO2 film electrodes. Materials Chemistry, 3(3), 179-188. doi:10.1016/0390-6035(78)90023-8 es_ES
dc.description.references McEvoy, A. J., & Gissler, W. (1982). A ruthenium dioxide‐semiconductor Schottky barrier photovoltaic device. Journal of Applied Physics, 53(2), 1251-1252. doi:10.1063/1.330541 es_ES
dc.description.references Wu, N. L., Hwang, J. Y., Liu, P. Y., Han, C. Y., Kuo, S. L., Liao, K. H., … Wang, S. Y. (2001). Synthesis and Characterization of Sb-Doped SnO[sub 2] Xerogel Electrochemical Capacitor. Journal of The Electrochemical Society, 148(6), A550. doi:10.1149/1.1368099 es_ES
dc.description.references Sugimoto, W., Kizaki, T., Yokoshima, K., Murakami, Y., & Takasu, Y. (2004). Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta, 49(2), 313-320. doi:10.1016/j.electacta.2003.08.013 es_ES
dc.description.references Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x es_ES
dc.description.references Iwakura, C., & Sakamoto, K. (1985). Effect of Active Layer Composition on the Service Life of  ( SnO2   and RuO2 )  ‐ Coated Ti Electrodes in Sulfuric Acid Solution. Journal of The Electrochemical Society, 132(10), 2420-2423. doi:10.1149/1.2113590 es_ES
dc.description.references J. O. M. Bockris A. K. N. Reddy M. E. Gamboa-Aldeco es_ES
dc.description.references Doyle, R. L., & Lyons, M. E. G. (2013). An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Physical Chemistry Chemical Physics, 15(14), 5224. doi:10.1039/c3cp43464h es_ES
dc.description.references Matsumoto, Y., & Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 14(5), 397-426. doi:10.1016/0254-0584(86)90045-3 es_ES
dc.description.references Gattrell, M., & Kirk, D. W. (1993). A Study of the Oxidation of Phenol at Platinum and Preoxidized Platinum Surfaces. Journal of The Electrochemical Society, 140(6), 1534-1540. doi:10.1149/1.2221598 es_ES
dc.description.references Lapuente, R., Cases, F., Garcés, P., Morallón, E., & Vázquez, J. . (1998). A voltammetric and FTIR–ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium. Journal of Electroanalytical Chemistry, 451(1-2), 163-171. doi:10.1016/s0022-0728(98)00098-9 es_ES
dc.description.references Lapuente, R., Quijada, C., Huerta, F., Cases, F., & Vázquez, J. L. (2003). X-Ray Photoelectron Spectroscopy Study of the Composition of Polyphenol Films Formed on Pt by Electropolymerisation of Phenol in the Presence of Sulphide in Carbonate Medium. Polymer Journal, 35(12), 911-919. doi:10.1295/polymj.35.911 es_ES
dc.description.references Panić, V. V., Dekanski, A. B., Vidaković, T. R., Mišković-Stanković, V. B., Javanović, B. Ž., & Nikolić, B. Ž. (2004). Oxidation of phenol on RuO2–TiO2/Ti anodes. Journal of Solid State Electrochemistry, 9(1), 43-54. doi:10.1007/s10008-004-0559-0 es_ES
dc.description.references Feng, Y. ., & Li, X. . (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research, 37(10), 2399-2407. doi:10.1016/s0043-1354(03)00026-5 es_ES
dc.description.references Li, X., Cui, Y., Feng, Y., Xie, Z., & Gu, J.-D. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research, 39(10), 1972-1981. doi:10.1016/j.watres.2005.02.021 es_ES
dc.description.references Zanta, C. L. P. S., de Andrade, A. R., & Boodts, J. F. C. (2000). Journal of Applied Electrochemistry, 30(4), 467-474. doi:10.1023/a:1003942411733 es_ES
dc.description.references Cestarolli, D. T., & de Andrade, A. R. (2007). Electrochemical Oxidation of Phenol at Ti∕Ru[sub 0.3]Pb[sub (0.7−x)]Ti[sub x]O[sub y] Electrodes in Aqueous Media. Journal of The Electrochemical Society, 154(2), E25. doi:10.1149/1.2405722 es_ES
dc.description.references Wels, B., & Johnson, D. C. (1990). Electrocatalysis of Anodic Oxygen Transfer Reactions: Oxidation of Cyanide at Electrodeposited Copper Oxide Electrodes in Alkaline Media. Journal of The Electrochemical Society, 137(9), 2785-2791. doi:10.1149/1.2087072 es_ES
dc.description.references Berenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2017). Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Applied Catalysis B: Environmental, 207, 286-296. doi:10.1016/j.apcatb.2017.01.078 es_ES
dc.description.references Berenguer, R., Quijada, C., La Rosa-Toro, A., & Morallón, E. (2019). Electro-oxidation of cyanide on active and non-active anodes: Designing the electrocatalytic response of cobalt spinels. Separation and Purification Technology, 208, 42-50. doi:10.1016/j.seppur.2018.05.024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem