Mostrar el registro sencillo del ítem
dc.contributor.author | Amole, C. | es_ES |
dc.contributor.author | Ardid Ramírez, Miguel | es_ES |
dc.contributor.author | Arnquist, I.J. | es_ES |
dc.contributor.author | Asner, D. M. | es_ES |
dc.contributor.author | Baxter, D. | es_ES |
dc.contributor.author | Behnke, E. | es_ES |
dc.contributor.author | Bhattacharjee, P. | es_ES |
dc.contributor.author | Borsodi, H. | es_ES |
dc.contributor.author | Bou Cabo, Manuel | es_ES |
dc.contributor.author | Campion, P. | es_ES |
dc.contributor.author | Cao, G. | es_ES |
dc.contributor.author | Chen, C.J. | es_ES |
dc.contributor.author | Chowdhury, U. | es_ES |
dc.contributor.author | Clark, K. | es_ES |
dc.contributor.author | Felis-Enguix, Iván | es_ES |
dc.date.accessioned | 2020-04-24T07:13:02Z | |
dc.date.available | 2020-04-24T07:13:02Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0031-9007 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141427 | |
dc.description.abstract | [EN] New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C3F8 located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C3F8 exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month. A blind analysis of an efficiency-corrected 1167-kg day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.4 x 10(-41) cm(2) for a 30-GeVc(-2) WIMP, more than 1 order of magnitude improvement from previous PICO results. | es_ES |
dc.description.sponsorship | The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical, and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We are grateful to Kristian Hahn and Stanislava Sevova of Northwestern University and Bjorn Penning of the University of Bristol for their assistance and useful discussion. We wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. We acknowledge the support from National Science Foundation (NSF) (Grants No. 0919526, No. 1506337, No. 1242637, and No. 1205987). We acknowledge that this work is supported by the U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics (under Award No. DE-SC-0012161), by a DOE Office of Science Graduate Student Research (SCGSR) award, by Direccion General Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (DGAPA-UNAM) through the grant Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) No. IA100316 and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) (Mexico) through Grant No. 252167, by the Department of Atomic Energy (DAE), the Government of India, under the Center of AstroParticle Physics II project (CAPP-II) at Saha Institute of Nuclear Physics (SINP), by the Czech Ministry of Education, Youth and Sports (Grant No. LM2015072), and by the Spanish Ministerio de Economia y Competitividad, Consolider MultiDark (Grant No. CSD2009-00064). This work is partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. 1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. We also wish to acknowledge the support from Fermi National Accelerator Laboratory under Contract No. De-AC02-07CH11359, and Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. We also thank Compute Canada and the Center for Advanced Computing, ACENET, Calcul Quebec, Compute Ontario, and WestGrid for the computational support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Dark Matter Search Results from the PICO-60C(3)F(8) Bubble Chamber | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevLett.118.251301 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1205987/US/RUI: Searching for WIMP Dark Matter With Superheated Liquids/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0919526/US/COUPP-500 kg: Design of a large-Mass Bubble Chamber for Dark Matter Detection/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1506337/US/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1242637/US/Construction of the COUPP-500kg Bubble Chamber for Dark Matter Detection/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-SC-0012161/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100316/MX/Búsqueda de materia oscura con los experimentos PICO y DEAP/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//252167/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSMT//LM2015072/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00064/ES/Método de Multimensajeros para la Detección de la Materia Oscura/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bhattacharjee, P.... (2017). Dark Matter Search Results from the PICO-60C(3)F(8) Bubble Chamber. Physical Review Letters. 118(25). https://doi.org/10.1103/PhysRevLett.118.251301 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1103/PhysRevLett.118.251301 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 118 | es_ES |
dc.description.issue | 25 | es_ES |
dc.relation.pasarela | S\348307 | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Canada Foundation for Innovation | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.contributor.funder | Ontario Ministry of Research and Innovation | es_ES |
dc.contributor.funder | Ministry of Education, Youth and Sports, República Checa | es_ES |
dc.contributor.funder | Department of Atomic Energy, Government of India | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Olive, K. A. (2014). Review of Particle Physics. Chinese Physics C, 38(9), 090001. doi:10.1088/1674-1137/38/9/090001 | es_ES |
dc.description.references | Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2009). FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 180(2), 330-376. doi:10.1088/0067-0049/180/2/330 | es_ES |
dc.description.references | Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5 | es_ES |
dc.description.references | Goodman, M. W., & Witten, E. (1985). Detectability of certain dark-matter candidates. Physical Review D, 31(12), 3059-3063. doi:10.1103/physrevd.31.3059 | es_ES |
dc.description.references | Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031 | es_ES |
dc.description.references | Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659 | es_ES |
dc.description.references | Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017 | es_ES |
dc.description.references | Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302 | es_ES |
dc.description.references | Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101 | es_ES |
dc.description.references | Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014 | es_ES |
dc.description.references | Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001 | es_ES |
dc.description.references | Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2011). Improved Limits on Spin-Dependent WIMP-Proton Interactions from a Two LiterCF3IBubble Chamber. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.021303 | es_ES |
dc.description.references | Archambault, S., Behnke, E., Bhattacharjee, P., Bhattacharya, S., Dai, X., Das, M., … Zacek, V. (2012). Constraints on low-mass WIMP interactions on 19F from PICASSO. Physics Letters B, 711(2), 153-161. doi:10.1016/j.physletb.2012.03.078 | es_ES |
dc.description.references | Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005 | es_ES |
dc.description.references | Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013 | es_ES |
dc.description.references | Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 | es_ES |
dc.description.references | Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., … Chytracek, R. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/tns.2006.869826 | es_ES |
dc.description.references | Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3 | es_ES |
dc.description.references | Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004 | es_ES |
dc.description.references | Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501 | es_ES |
dc.description.references | Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521 | es_ES |
dc.description.references | Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057 | es_ES |
dc.description.references | Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301 | es_ES |
dc.description.references | Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9 | es_ES |
dc.description.references | Tanaka, T., Abe, K., Hayato, Y., Iida, T., Kameda, J., Koshio, Y., … Nakahata, M. (2011). AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. The Astrophysical Journal, 742(2), 78. doi:10.1088/0004-637x/742/2/78 | es_ES |
dc.description.references | Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301 | es_ES |
dc.description.references | Roszkowski, L., Austri, R. R. de, & Trotta, R. (2007). Implications for the Constrained MSSM from a new prediction forb→sγ. Journal of High Energy Physics, 2007(07), 075-075. doi:10.1088/1126-6708/2007/07/075 | es_ES |
dc.description.references | Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., … Boulton, E. M. (2016). Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. Physical Review Letters, 116(16). doi:10.1103/physrevlett.116.161302 | es_ES |
dc.description.references | Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., … Bauermeister, B. (2016). XENON100 dark matter results from a combination of 477 live days. Physical Review D, 94(12). doi:10.1103/physrevd.94.122001 | es_ES |
dc.description.references | Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019 | es_ES |
dc.description.references | Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016 | es_ES |
dc.description.references | Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303 | es_ES |
dc.description.references | Tan, A., Xiao, M., Cui, X., Chen, X., Chen, Y., Fang, D., … Gong, H. (2016). Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Physical Review Letters, 117(12). doi:10.1103/physrevlett.117.121303 | es_ES |
dc.description.references | Angloher, G., Bento, A., Bucci, C., Canonica, L., Defay, X., Erb, A., … Zöller, A. (2016). Results on light dark matter particles with a low-threshold CRESST-II detector. The European Physical Journal C, 76(1). doi:10.1140/epjc/s10052-016-3877-3 | es_ES |
dc.description.references | Agnese, R., Anderson, A. J., Aramaki, T., Asai, M., Baker, W., Balakishiyeva, D., … Billard, J. (2016). New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment. Physical Review Letters, 116(7). doi:10.1103/physrevlett.116.071301 | es_ES |
dc.description.references | Agnes, P., Agostino, L., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Arisaka, K., … Bonfini, G. (2016). Results from the first use of low radioactivity argon in a dark matter search. Physical Review D, 93(8). doi:10.1103/physrevd.93.081101 | es_ES |
dc.description.references | Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Basu Thakur, R., Bauer, D. A., … Bowles, M. A. (2014). Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Physical Review Letters, 112(24). doi:10.1103/physrevlett.112.241302 | es_ES |
dc.description.references | Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., … Bowles, M. A. (2015). Improved WIMP-search reach of the CDMS II germanium data. Physical Review D, 92(7). doi:10.1103/physrevd.92.072003 | es_ES |
dc.description.references | Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-y | es_ES |
dc.description.references | Tovey, D. R., Gaitskell, R. J., Gondolo, P., Ramachers, Y., & Roszkowski, L. (2000). A new model-independent method for extracting spin-dependent cross section limits from dark matter searches. Physics Letters B, 488(1), 17-26. doi:10.1016/s0370-2693(00)00846-7 | es_ES |
dc.description.references | Buchmueller, O., Dolan, M. J., Malik, S. A., & McCabe, C. (2015). Characterising dark matter searches at colliders and direct detection experiments: vector mediators. Journal of High Energy Physics, 2015(1). doi:10.1007/jhep01(2015)037 | es_ES |
dc.description.references | Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., … Abramowicz, H. (2016). Search for new phenomena in final states with an energetic jet and large missing transverse momentum inppcollisions ats=13 TeVusing the ATLAS detector. Physical Review D, 94(3). doi:10.1103/physrevd.94.032005 | es_ES |