- -

Existence of Picard operator and iterated function system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Existence of Picard operator and iterated function system

Mostrar el registro completo del ítem

Garg, M.; Chandok, S. (2020). Existence of Picard operator and iterated function system. Applied General Topology. 21(1):57-70. https://doi.org/10.4995/agt.2020.11992

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141559

Ficheros en el ítem

Metadatos del ítem

Título: Existence of Picard operator and iterated function system
Autor: Garg, Medha Chandok, Sumit
Fecha difusión:
Resumen:
[EN] In this paper, we define weak θm− contraction mappings and give a new class of Picard operators for such class of mappings on a complete metric space. Also, we obtain some new results on the existence and uniqueness ...[+]
Palabras clave: Picard operator , Fixed point , Weak θm− contraction , Iterated function system
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2020.11992
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2020.11992
Código del Proyecto:
info:eu-repo/grantAgreement/DST//CRD%2F2018%2F000017/
Agradecimientos:
The authors are thankful to the learned referee for valuable suggestions. The second author is also thankful to AISTDF, DST for the research grant vide project No. CRD/2018/000017.
Tipo: Artículo

References

S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α, β) − (ψ, φ)- contractive mappings, Filomat 28 (2014), 635-647. https://doi.org/10.2298/FIL1403635A

M. F. Barnsley, Fractals Everywhere, Revised with the Assistance of and with a Foreword by Hawley Rising, III. Academic Press Professional, Boston (1993).

R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108. [+]
S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α, β) − (ψ, φ)- contractive mappings, Filomat 28 (2014), 635-647. https://doi.org/10.2298/FIL1403635A

M. F. Barnsley, Fractals Everywhere, Revised with the Assistance of and with a Foreword by Hawley Rising, III. Academic Press Professional, Boston (1993).

R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108.

E. L. Fuster, A. Petrusel and J. C. Yao, Iterated function system and well-posedness, Chaos Sol. Fract. 41 (2009), 1561-1568. https://doi.org/10.1016/j.chaos.2008.06.019

R. H. Haghi, Sh. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal. 74 (2011), 1799-1803. https://doi.org/10.1016/j.na.2010.10.052

N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015, 185 (2015). https://doi.org/10.1186/s13663-015-0433-z

J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30, no. 5 (1981), 713-747. https://doi.org/10.1512/iumj.1981.30.30055

M. Imdad, W. M. Alfaqih and I. A. Khan, Weak θ−contractions and some fixed point results with applications to fractal theory, Adv. Diff. Eq. 439 (2018). https://doi.org/10.1186/s13662-018-1900-8

M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 38 (2014). https://doi.org/10.1186/1029-242X-2014-38

M. Radenovic and S. Chandok, Simulation type functions and coincidence points, Filomat, 32, no. 1 (2018), 141-147. https://doi.org/10.2298/FIL1801141R

B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. American Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4

I. A. Rus, Picard operators and applications, Sci. Math. Jpn. 58, no. 1 (2003), 191-219.

I. A. Rus, A. Petrusel and G. Petrusel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.

N. A. Secelean, Countable Iterated Function Systems, LAP LAMBERT Academic Publishing (2013). https://doi.org/10.1186/1687-1812-2013-277

N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013, 277 (2013). https://doi.org/10.1186/1687-1812-2013-277

V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 5 (1972), 571-576. https://doi.org/10.1112/jlms/s2-5.3.571

S.-A. Urziceanu, Alternative charaterizations of AGIFSs having attactors, Fixed Point Theory 20 (2019), 729-740. https://doi.org/10.24193/fpt-ro.2019.2.48

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem