Camilleri-Rumbau, MDLS.; Soler-Cabezas, JL.; Christensen, KV.; Norddahl, B.; Mendoza Roca, JA.; Vincent Vela, MC. (2019). Application of aquaporin-based forward osmosis membranes for processing of digestate liquid fractions. Chemical Engineering Journal. 371:583-592. https://doi.org/10.1016/j.cej.2019.02.029
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141640
Title:
|
Application of aquaporin-based forward osmosis membranes for processing of digestate liquid fractions
|
Author:
|
CAMILLERI-RUMBAU, MARÍA DE LA SALUD
Soler-Cabezas, José Luis
Christensen, Knud Villy
Norddahl, Birgir
Mendoza Roca, José Antonio
Vincent Vela, Maria Cinta
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
|
Issued date:
|
|
Abstract:
|
[EN] Forward osmosis is a low-energy water treatment emerging technology, which has demonstrated improved solute rejection and low fouling propensity. In this study, the applicability of aquaporin-based forward osmosis ...[+]
[EN] Forward osmosis is a low-energy water treatment emerging technology, which has demonstrated improved solute rejection and low fouling propensity. In this study, the applicability of aquaporin-based forward osmosis membranes during separation of biogas digestate liquid fractions was investigated. The results showed that Total Ammonia-Nitrogen rejection was higher than 95.5% in all experiments, independently of the type of draw solution (NaCl and hide preservation effluents), experimental period and the use of feed acidification. The results also confirmed that high draw osmotic pressures (i.e. 3.5¿M sodium chloride and hide preservation wastewater) combined with feed acidification had a negative effect on the membrane water permeability. Membrane rinsing after fouling was also successful in recovering the membrane initial water flux as well as removing the remaining foulants on the membrane surface. The membrane inspection results from Scanning-Electron Microscope, Energy-Dispersive X-Ray analysis and Fourier Transform Infrared¿Attenuated Total Reflectance showed that fouling in this application was mild and reversible after membrane rinsing. The applicability of aquaporin-based forward osmosis membranes during separation of biogas digestate liquid fractions has been demonstrated. The results showed the potential of this technology to achieve enhanced ammonia-nitrogen rejections and low-fouling propensity.
[-]
|
Subjects:
|
Forward osmosis
,
Digestate liquid fraction
,
Hide preservation wastewater
,
Total ammonia-nitrogen rejection (TAN)
,
Membrane rinsing
,
Membrane fouling
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
Chemical Engineering Journal. (issn:
1385-8947
)
|
DOI:
|
10.1016/j.cej.2019.02.029
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.cej.2019.02.029
|
Project ID:
|
info:eu-repo/grantAgreement/EC/FP7/289887/EU/Recovery and Use of Nutrients, Energy and Organic Matter from Animal Waste/
|
Thanks:
|
The authors thank the tannery factory in the region of Murcia (Spain) for providing the wastewater samples as well as Depuración de Aguas del Mediterráneo (DAM, Spain) for funding the forward osmosis project. Thanks to ...[+]
The authors thank the tannery factory in the region of Murcia (Spain) for providing the wastewater samples as well as Depuración de Aguas del Mediterráneo (DAM, Spain) for funding the forward osmosis project. Thanks to August Bonmatí from IRTA GIRO Joint Research Unit IRTA-UPC, for providing the digestate liquid fractions, to Rebeca Vidal-Pérez as student assistant during the chemical analysis and to the Electron Microscopy Service from the Polytechnic University of Valencia (UPV, Spain). The authors further acknowledge funding from People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° [289887].
[-]
|
Type:
|
Artículo
|