Carando, D.; Galicer, D.; Muro, S.; Sevilla Peris, P. (2018). Cluster values for algebras of analytic functions. Advances in Mathematics. 329:157-173. https://doi.org/10.1016/j.aim.2017.08.030
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141973
Título:
|
Cluster values for algebras of analytic functions
|
Autor:
|
Carando, Daniel
Galicer, Daniel
Muro, Santiago
Sevilla Peris, Pablo
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Fecha difusión:
|
|
Resumen:
|
[EN] The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra A(u)(B-X), the Banach algebra of all uniformly ...[+]
[EN] The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra A(u)(B-X), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball B-X; and also for the Frechet algebra H-b(X) of holomorphic functions of bounded type on X (more generally, for H-b(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U subset of X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space.
As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras. (C) 2017 Elsevier Inc. All rights reserved.
[-]
|
Palabras clave:
|
Cluster value problem
,
Corona Theorem
,
Ball algebra
,
Analytic functions of bounded type
,
Spectrum
,
Fiber
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
Advances in Mathematics. (issn:
0001-8708
)
|
DOI:
|
10.1016/j.aim.2017.08.030
|
Editorial:
|
Elsevier
|
Versión del editor:
|
https://doi.org/10.1016/j.aim.2017.08.030
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/
...[+]
info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/
info:eu-repo/grantAgreement/ANPCyT//PICT-2015-2299/AR/Análisis no lineal en dimensión infinita y geometría de espacios de Banach/
info:eu-repo/grantAgreement/ANPCyT//PICT-2015-3085/AR/Análisis funcional no-lineal: Desigualdades polinomiales, series de Dirichlet e integrales de energía/
info:eu-repo/grantAgreement/ANPCyT//PICT-2015-2224/AR/Dinámica de operadores y espacios de funciones analíticas/
info:eu-repo/grantAgreement/UBA/UBACyT/20020130300057BA/
info:eu-repo/grantAgreement/UBA/UBACyT/20020130300052BA/
info:eu-repo/grantAgreement/UBA/UBACyT/20020130100474BA/
info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/
[-]
|
Agradecimientos:
|
This work was partially supported by projects CONICET PIP 11220130100329CO, ANPCyT PICT 2015-2299, ANPCyT PICT-2015-3085, ANPCyT PICT-2015-2224, UBACyT 20020130300057BA, UBACyT 20020130300052BA, UBACyT 20020130100474BA and ...[+]
This work was partially supported by projects CONICET PIP 11220130100329CO, ANPCyT PICT 2015-2299, ANPCyT PICT-2015-3085, ANPCyT PICT-2015-2224, UBACyT 20020130300057BA, UBACyT 20020130300052BA, UBACyT 20020130100474BA and MINECO and FEDER Project MTM2014-57838-C2-2-P.
[-]
|
Tipo:
|
Artículo
|