- -

CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-Rivera, M.J. es_ES
dc.contributor.author Giner-Sanz, Juan José es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Mestre, S. es_ES
dc.date.accessioned 2020-04-30T06:21:16Z
dc.date.available 2020-04-30T06:21:16Z
dc.date.issued 2019-04-02 es_ES
dc.identifier.issn 1546-542X es_ES
dc.identifier.uri http://hdl.handle.net/10251/142040
dc.description.abstract [EN] Antimony¿doped tin oxide electrodes with CuO as sintering aid are presented as an economical alternative to metal¿based electrodes, intended for the electrooxidation process of emerging and recalcitrant organic contaminants in wastewaters. The CuO proportion has been optimized to obtain densified electrodes with a mild thermal cycle (Tmax = 1200°C). One of the manufactured electrodes (97.8 mol.% of SnO2, 1.0 mol.% of Sb2O3, and 1.2 mol.% of CuO) was selected for electrochemical characterization from a physical and morphological analysis. The electrochemical behavior of the selected electrode showed that the addition of CuO as sintering aid widens the electrochemical window and increases the electrode ¿inactivity¿, with respect to an (Sn, Sb)O2 electrode synthesized in the same conditions. In return, the (Sn,Sb,Cu)O2 electrode presents a significantly lower electrochemical rugosity factor. Moreover, the addition of CuO does not change the oxygen evolution reaction mechanism, but it modifies the kinetic parameters, leading to a larger accumulation of hydroxyl radicals. Consequently, the addition of CuO as sintering aid significantly improves the electrochemical properties of the electrode as an electrochemical advanced oxidation process anode with respect to the (Sn,Sb)O2 electrode, at the expense of worsening its electrochemical roughness factor. The results of the electrochemical characterization were confirmed by Norfloxacin degradation tests. es_ES
dc.description.sponsorship The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof International Journal of Applied Ceramic Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrical conductivity es_ES
dc.subject Electrodes es_ES
dc.subject Oxidation process es_ES
dc.subject Sintering es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijac.13149 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Sánchez-Rivera, M.; Giner-Sanz, JJ.; Pérez-Herranz, V.; Mestre, S. (2019). CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology. 16(3):1274-1285. https://doi.org/10.1111/ijac.13149 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ijac.13149 es_ES
dc.description.upvformatpinicio 1274 es_ES
dc.description.upvformatpfin 1285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\390441 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d es_ES
dc.description.references Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159-175. doi:10.1016/j.chemosphere.2018.05.026 es_ES
dc.description.references Trellu, C., Coetsier, C., Rouch, J.-C., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water Research, 131, 310-319. doi:10.1016/j.watres.2017.12.070 es_ES
dc.description.references Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h es_ES
dc.description.references Kent, C. A., Concepcion, J. J., Dares, C. J., Torelli, D. A., Rieth, A. J., Miller, A. S., … Meyer, T. J. (2013). Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes. Journal of the American Chemical Society, 135(23), 8432-8435. doi:10.1021/ja400616a es_ES
dc.description.references Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M., & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry, 668, 1-6. doi:10.1016/j.jelechem.2011.12.022 es_ES
dc.description.references Frasca, S., Molero Milan, A., Guiet, A., Goebel, C., Pérez-Caballero, F., Stiba, K., … Wollenberger, U. (2013). Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes—Electrochemical characterization and direct enzyme communication. Electrochimica Acta, 110, 172-180. doi:10.1016/j.electacta.2013.03.144 es_ES
dc.description.references Evans, C. J. (1998). Industrial uses of tin chemicals. Chemistry of Tin, 442-479. doi:10.1007/978-94-011-4938-9_12 es_ES
dc.description.references Molera, J., Pradell, T., Salvadó, N., & Vendrell-Saz, M. (2004). Evidence of Tin Oxide Recrystallization in Opacified Lead Glazes. Journal of the American Ceramic Society, 82(10), 2871-2875. doi:10.1111/j.1151-2916.1999.tb02170.x es_ES
dc.description.references Tsai, P. P., Chen, I.-C., & Tzeng, M. H. (1995). Tin oxide (SnOX) carbon monoxide sensor fabricated by thick-film methods. Sensors and Actuators B: Chemical, 25(1-3), 537-539. doi:10.1016/0925-4005(95)85116-x es_ES
dc.description.references Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z., & Xin, X. (2002). One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 81(2-3), 165-169. doi:10.1016/s0925-4005(01)00947-9 es_ES
dc.description.references Zuca, S., Terzi, M., Zaharescu, M., & Matiasovsky, K. (1991). Contribution to the study of SnO2-based ceramics. Journal of Materials Science, 26(6), 1673-1676. doi:10.1007/bf00544681 es_ES
dc.description.references Batzill, M., & Diebold, U. (2005). The surface and materials science of tin oxide. Progress in Surface Science, 79(2-4), 47-154. doi:10.1016/j.progsurf.2005.09.002 es_ES
dc.description.references Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 es_ES
dc.description.references Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8 es_ES
dc.description.references Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x es_ES
dc.description.references Lin, Y.-J., & Wu, C.-J. (1997). The properties of antimony-doped tin oxide thin films from the sol-gel process. Surface and Coatings Technology, 88(1-3), 239-247. doi:10.1016/s0257-8972(96)02926-x es_ES
dc.description.references Maria Garcia dos Santos, I., Longo, E., Arana Varela, J., & Roberto Leite, E. (2000). Sintering of tin oxide processed by slip casting. Journal of the European Ceramic Society, 20(14-15), 2407-2413. doi:10.1016/s0955-2219(00)00130-8 es_ES
dc.description.references Krishnakumar, T., Jayaprakash, R., Pinna, N., Phani, A. R., Passacantando, M., & Santucci, S. (2009). Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 70(6), 993-999. doi:10.1016/j.jpcs.2009.05.013 es_ES
dc.description.references Medvedovski, E. (2017). Tin oxide-based ceramics of high density obtained by pressureless sintering. Ceramics International, 43(11), 8396-8405. doi:10.1016/j.ceramint.2017.03.185 es_ES
dc.description.references Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x es_ES
dc.description.references Foschini, C. R., Perazolli, L., & Varela, J. A. (2004). Sintering of tin oxide using zinc oxide as a densification aid. Journal of Materials Science, 39(18), 5825-5830. doi:10.1023/b:jmsc.0000040095.03906.61 es_ES
dc.description.references Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4 es_ES
dc.description.references Popescu, A.-M., Mihaiu, S., & Zuca, S. (2002). Microstructure and Electrochemical Behaviour of some SnO2-based Inert Electrodes in Aluminium Electrolysis. Zeitschrift für Naturforschung A, 57(1-2), 71-75. doi:10.1515/zna-2002-1-210 es_ES
dc.description.references Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062 es_ES
dc.description.references Castro, M. S., & Aldao, C. M. (1998). Characterization of SnO2-varistors with different additives. Journal of the European Ceramic Society, 18(14), 2233-2239. doi:10.1016/s0955-2219(97)00130-1 es_ES
dc.description.references Sahar, M. R., & Hasbullah, M. (1995). Properties of SnO2-based ceramics. Journal of Materials Science, 30(20), 5304-5306. doi:10.1007/bf00356085 es_ES
dc.description.references Nisiro, D., Fabbri, G., Celotti, G. C., & Bellosi, A. (2003). Journal of Materials Science, 38(12), 2727-2742. doi:10.1023/a:1024459307992 es_ES
dc.description.references RM German Sintering theory and practice 1996 John Wiley & Sons Inc New York NY 11 2 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066 es_ES
dc.description.references Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093 es_ES
dc.description.references Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943 es_ES
dc.description.references Stan, M., Mihaiu, S., Crisan, D., & Zaharescu, M. (1998). Subsolidus phase equilibrium in the Cu-Sb-O system. European Journal of Solid State and Inorganic Chemistry, 35(3), 243-254. doi:10.1016/s0992-4361(98)80005-2 es_ES
dc.description.references Lalande, J., Ollitrault-Fichet, R., & Boch, P. (2000). Sintering behaviour of CuO-doped SnO2. Journal of the European Ceramic Society, 20(14-15), 2415-2420. doi:10.1016/s0955-2219(00)00153-9 es_ES
dc.description.references Zhang, T. S., Kong, L. B., Song, X. C., Du, Z. H., Xu, W. Q., & Li, S. (2014). Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2: A comparative study. Acta Materialia, 62, 81-88. doi:10.1016/j.actamat.2013.09.031 es_ES
dc.description.references García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jes es_ES
dc.description.references Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x es_ES
dc.description.references Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098 es_ES
dc.description.references K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823 es_ES
dc.description.references Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1 es_ES
dc.description.references Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f es_ES
dc.description.references Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141 es_ES
dc.description.references BROSSARD, L., & MARQUIS, B. (1994). Electrocatalytic behavior of Co/Cu electrodeposits in 1M KOH at 30°C. International Journal of Hydrogen Energy, 19(3), 231-237. doi:10.1016/0360-3199(94)90091-4 es_ES
dc.description.references Jaksic, J. M., Ristic, N. M., Krstajic, N. V., & Jaksic, M. M. (1998). Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals. International Journal of Hydrogen Energy, 23(12), 1121-1156. doi:10.1016/s0360-3199(98)00014-7 es_ES
dc.description.references Fazle Kibria, A. (2002). Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER). International Journal of Hydrogen Energy, 27(9), 879-884. doi:10.1016/s0360-3199(01)00185-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem