Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Rivera, M.J. | es_ES |
dc.contributor.author | Giner-Sanz, Juan José | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.contributor.author | Mestre, S. | es_ES |
dc.date.accessioned | 2020-04-30T06:21:16Z | |
dc.date.available | 2020-04-30T06:21:16Z | |
dc.date.issued | 2019-04-02 | es_ES |
dc.identifier.issn | 1546-542X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142040 | |
dc.description.abstract | [EN] Antimony¿doped tin oxide electrodes with CuO as sintering aid are presented as an economical alternative to metal¿based electrodes, intended for the electrooxidation process of emerging and recalcitrant organic contaminants in wastewaters. The CuO proportion has been optimized to obtain densified electrodes with a mild thermal cycle (Tmax = 1200°C). One of the manufactured electrodes (97.8 mol.% of SnO2, 1.0 mol.% of Sb2O3, and 1.2 mol.% of CuO) was selected for electrochemical characterization from a physical and morphological analysis. The electrochemical behavior of the selected electrode showed that the addition of CuO as sintering aid widens the electrochemical window and increases the electrode ¿inactivity¿, with respect to an (Sn, Sb)O2 electrode synthesized in the same conditions. In return, the (Sn,Sb,Cu)O2 electrode presents a significantly lower electrochemical rugosity factor. Moreover, the addition of CuO does not change the oxygen evolution reaction mechanism, but it modifies the kinetic parameters, leading to a larger accumulation of hydroxyl radicals. Consequently, the addition of CuO as sintering aid significantly improves the electrochemical properties of the electrode as an electrochemical advanced oxidation process anode with respect to the (Sn,Sb)O2 electrode, at the expense of worsening its electrochemical roughness factor. The results of the electrochemical characterization were confirmed by Norfloxacin degradation tests. | es_ES |
dc.description.sponsorship | The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | International Journal of Applied Ceramic Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrical conductivity | es_ES |
dc.subject | Electrodes | es_ES |
dc.subject | Oxidation process | es_ES |
dc.subject | Sintering | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ijac.13149 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Sánchez-Rivera, M.; Giner-Sanz, JJ.; Pérez-Herranz, V.; Mestre, S. (2019). CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology. 16(3):1274-1285. https://doi.org/10.1111/ijac.13149 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/ijac.13149 | es_ES |
dc.description.upvformatpinicio | 1274 | es_ES |
dc.description.upvformatpfin | 1285 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\390441 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d | es_ES |
dc.description.references | Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159-175. doi:10.1016/j.chemosphere.2018.05.026 | es_ES |
dc.description.references | Trellu, C., Coetsier, C., Rouch, J.-C., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water Research, 131, 310-319. doi:10.1016/j.watres.2017.12.070 | es_ES |
dc.description.references | Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h | es_ES |
dc.description.references | Kent, C. A., Concepcion, J. J., Dares, C. J., Torelli, D. A., Rieth, A. J., Miller, A. S., … Meyer, T. J. (2013). Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes. Journal of the American Chemical Society, 135(23), 8432-8435. doi:10.1021/ja400616a | es_ES |
dc.description.references | Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M., & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry, 668, 1-6. doi:10.1016/j.jelechem.2011.12.022 | es_ES |
dc.description.references | Frasca, S., Molero Milan, A., Guiet, A., Goebel, C., Pérez-Caballero, F., Stiba, K., … Wollenberger, U. (2013). Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes—Electrochemical characterization and direct enzyme communication. Electrochimica Acta, 110, 172-180. doi:10.1016/j.electacta.2013.03.144 | es_ES |
dc.description.references | Evans, C. J. (1998). Industrial uses of tin chemicals. Chemistry of Tin, 442-479. doi:10.1007/978-94-011-4938-9_12 | es_ES |
dc.description.references | Molera, J., Pradell, T., Salvadó, N., & Vendrell-Saz, M. (2004). Evidence of Tin Oxide Recrystallization in Opacified Lead Glazes. Journal of the American Ceramic Society, 82(10), 2871-2875. doi:10.1111/j.1151-2916.1999.tb02170.x | es_ES |
dc.description.references | Tsai, P. P., Chen, I.-C., & Tzeng, M. H. (1995). Tin oxide (SnOX) carbon monoxide sensor fabricated by thick-film methods. Sensors and Actuators B: Chemical, 25(1-3), 537-539. doi:10.1016/0925-4005(95)85116-x | es_ES |
dc.description.references | Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z., & Xin, X. (2002). One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 81(2-3), 165-169. doi:10.1016/s0925-4005(01)00947-9 | es_ES |
dc.description.references | Zuca, S., Terzi, M., Zaharescu, M., & Matiasovsky, K. (1991). Contribution to the study of SnO2-based ceramics. Journal of Materials Science, 26(6), 1673-1676. doi:10.1007/bf00544681 | es_ES |
dc.description.references | Batzill, M., & Diebold, U. (2005). The surface and materials science of tin oxide. Progress in Surface Science, 79(2-4), 47-154. doi:10.1016/j.progsurf.2005.09.002 | es_ES |
dc.description.references | Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 | es_ES |
dc.description.references | Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8 | es_ES |
dc.description.references | Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x | es_ES |
dc.description.references | Lin, Y.-J., & Wu, C.-J. (1997). The properties of antimony-doped tin oxide thin films from the sol-gel process. Surface and Coatings Technology, 88(1-3), 239-247. doi:10.1016/s0257-8972(96)02926-x | es_ES |
dc.description.references | Maria Garcia dos Santos, I., Longo, E., Arana Varela, J., & Roberto Leite, E. (2000). Sintering of tin oxide processed by slip casting. Journal of the European Ceramic Society, 20(14-15), 2407-2413. doi:10.1016/s0955-2219(00)00130-8 | es_ES |
dc.description.references | Krishnakumar, T., Jayaprakash, R., Pinna, N., Phani, A. R., Passacantando, M., & Santucci, S. (2009). Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 70(6), 993-999. doi:10.1016/j.jpcs.2009.05.013 | es_ES |
dc.description.references | Medvedovski, E. (2017). Tin oxide-based ceramics of high density obtained by pressureless sintering. Ceramics International, 43(11), 8396-8405. doi:10.1016/j.ceramint.2017.03.185 | es_ES |
dc.description.references | Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x | es_ES |
dc.description.references | Foschini, C. R., Perazolli, L., & Varela, J. A. (2004). Sintering of tin oxide using zinc oxide as a densification aid. Journal of Materials Science, 39(18), 5825-5830. doi:10.1023/b:jmsc.0000040095.03906.61 | es_ES |
dc.description.references | Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4 | es_ES |
dc.description.references | Popescu, A.-M., Mihaiu, S., & Zuca, S. (2002). Microstructure and Electrochemical Behaviour of some SnO2-based Inert Electrodes in Aluminium Electrolysis. Zeitschrift für Naturforschung A, 57(1-2), 71-75. doi:10.1515/zna-2002-1-210 | es_ES |
dc.description.references | Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062 | es_ES |
dc.description.references | Castro, M. S., & Aldao, C. M. (1998). Characterization of SnO2-varistors with different additives. Journal of the European Ceramic Society, 18(14), 2233-2239. doi:10.1016/s0955-2219(97)00130-1 | es_ES |
dc.description.references | Sahar, M. R., & Hasbullah, M. (1995). Properties of SnO2-based ceramics. Journal of Materials Science, 30(20), 5304-5306. doi:10.1007/bf00356085 | es_ES |
dc.description.references | Nisiro, D., Fabbri, G., Celotti, G. C., & Bellosi, A. (2003). Journal of Materials Science, 38(12), 2727-2742. doi:10.1023/a:1024459307992 | es_ES |
dc.description.references | RM German Sintering theory and practice 1996 John Wiley & Sons Inc New York NY 11 2 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066 | es_ES |
dc.description.references | Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093 | es_ES |
dc.description.references | Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943 | es_ES |
dc.description.references | Stan, M., Mihaiu, S., Crisan, D., & Zaharescu, M. (1998). Subsolidus phase equilibrium in the Cu-Sb-O system. European Journal of Solid State and Inorganic Chemistry, 35(3), 243-254. doi:10.1016/s0992-4361(98)80005-2 | es_ES |
dc.description.references | Lalande, J., Ollitrault-Fichet, R., & Boch, P. (2000). Sintering behaviour of CuO-doped SnO2. Journal of the European Ceramic Society, 20(14-15), 2415-2420. doi:10.1016/s0955-2219(00)00153-9 | es_ES |
dc.description.references | Zhang, T. S., Kong, L. B., Song, X. C., Du, Z. H., Xu, W. Q., & Li, S. (2014). Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2: A comparative study. Acta Materialia, 62, 81-88. doi:10.1016/j.actamat.2013.09.031 | es_ES |
dc.description.references | García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jes | es_ES |
dc.description.references | Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x | es_ES |
dc.description.references | Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098 | es_ES |
dc.description.references | K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823 | es_ES |
dc.description.references | Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1 | es_ES |
dc.description.references | Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f | es_ES |
dc.description.references | Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141 | es_ES |
dc.description.references | BROSSARD, L., & MARQUIS, B. (1994). Electrocatalytic behavior of Co/Cu electrodeposits in 1M KOH at 30°C. International Journal of Hydrogen Energy, 19(3), 231-237. doi:10.1016/0360-3199(94)90091-4 | es_ES |
dc.description.references | Jaksic, J. M., Ristic, N. M., Krstajic, N. V., & Jaksic, M. M. (1998). Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals. International Journal of Hydrogen Energy, 23(12), 1121-1156. doi:10.1016/s0360-3199(98)00014-7 | es_ES |
dc.description.references | Fazle Kibria, A. (2002). Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER). International Journal of Hydrogen Energy, 27(9), 879-884. doi:10.1016/s0360-3199(01)00185-9 | es_ES |