Komma, J., Schwarz, C., Hofmann, G., Heinert, D., & Nawrodt, R. (2012). Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Applied Physics Letters, 101(4), 041905. doi:10.1063/1.4738989
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727
Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93
[+]
Komma, J., Schwarz, C., Hofmann, G., Heinert, D., & Nawrodt, R. (2012). Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Applied Physics Letters, 101(4), 041905. doi:10.1063/1.4738989
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727
Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93
Atabaki, A. H., Moazeni, S., Pavanello, F., Gevorgyan, H., Notaros, J., Alloatti, L., … Ram, R. J. (2018). Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556(7701), 349-354. doi:10.1038/s41586-018-0028-z
Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1
Sun, P., & Reano, R. M. (2010). Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Optics Express, 18(8), 8406. doi:10.1364/oe.18.008406
Atabaki, A. H., Eftekhar, A. A., Yegnanarayanan, S., & Adibi, A. (2013). Sub-100-nanosecond thermal reconfiguration of silicon photonic devices. Optics Express, 21(13), 15706. doi:10.1364/oe.21.015706
Masood, A., Pantouvaki, M., Goossens, D., Lepage, G., Verheyen, P., Van Campenhout, J., … Bogaerts, W. (2014). Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices. Optical Materials Express, 4(7), 1383. doi:10.1364/ome.4.001383
Rosa, Á., Gutiérrez, A., Brimont, A., Griol, A., & Sanchis, P. (2016). High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Optics Express, 24(1), 191. doi:10.1364/oe.24.000191
Jacques, M., Samani, A., El-Fiky, E., Patel, D., Xing, Z., & Plant, D. V. (2019). Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Optics Express, 27(8), 10456. doi:10.1364/oe.27.010456
Wang, X., & Chiang, K. S. (2019). Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler. Optics Express, 27(24), 35385. doi:10.1364/oe.27.035385
Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S., & Adibi, A. (2010). Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Optics Express, 18(17), 18312. doi:10.1364/oe.18.018312
Yu, L., Yin, Y., Shi, Y., Dai, D., & He, S. (2016). Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3(2), 159. doi:10.1364/optica.3.000159
Schall, D., Mohsin, M., Sagade, A. A., Otto, M., Chmielak, B., Suckow, S., … Kurz, H. (2016). Infrared transparent graphene heater for silicon photonic integrated circuits. Optics Express, 24(8), 7871. doi:10.1364/oe.24.007871
Yan, S., Zhu, X., Frandsen, L. H., Xiao, S., Mortensen, N. A., Dong, J., & Ding, Y. (2017). Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 8(1). doi:10.1038/ncomms14411
Xu, Z., Qiu, C., Yang, Y., Zhu, Q., Jiang, X., Zhang, Y., … Su, Y. (2017). Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 25(16), 19479. doi:10.1364/oe.25.019479
Lv, J., Yang, Y., Lin, B., Cao, Y., Zhang, Y., Li, S., … Zhang, D. (2019). Graphene-embedded first-order mode polymer Mach–Zender interferometer thermo-optic switch with low power consumption. Optics Letters, 44(18), 4606. doi:10.1364/ol.44.004606
Wang, X., Jin, W., Chang, Z., & Chiang, K. S. (2019). Buried graphene electrode heater for a polymer waveguide thermo-optic device. Optics Letters, 44(6), 1480. doi:10.1364/ol.44.001480
Lee, D.-J., Kim, H.-M., Kwon, J.-Y., Choi, H., Kim, S.-H., & Kim, K.-B. (2010). Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films. Advanced Functional Materials, 21(3), 448-455. doi:10.1002/adfm.201001342
Cleary, J. W., Smith, E. M., Leedy, K. D., Grzybowski, G., & Guo, J. (2018). Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Optical Materials Express, 8(5), 1231. doi:10.1364/ome.8.001231
Ray, S., Banerjee, R., Basu, N., Batabyal, A. K., & Barua, A. K. (1983). Properties of tin doped indium oxide thin films prepared by magnetron sputtering. Journal of Applied Physics, 54(6), 3497-3501. doi:10.1063/1.332415
Babicheva, V. E., Kinsey, N., Naik, G. V., Ferrera, M., Lavrinenko, A. V., Shalaev, V. M., & Boltasseva, A. (2013). Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Optics Express, 21(22), 27326. doi:10.1364/oe.21.027326
Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R.-M., & Zhang, X. (2012). Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1(1), 17-22. doi:10.1515/nanoph-2012-0009
Shi, K., Haque, R. R., Zhao, B., Zhao, R., & Lu, Z. (2014). Broadband electro-optical modulator based on transparent conducting oxide. Optics Letters, 39(17), 4978. doi:10.1364/ol.39.004978
Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., … Leuthold, J. (2014). The plasmonic memristor: a latching optical switch. Optica, 1(4), 198. doi:10.1364/optica.1.000198
Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J. S., Kik, P. G., & Brongersma, M. L. (2018). Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics, 5(11), 4484-4490. doi:10.1021/acsphotonics.8b00945
Li, E., Gao, Q., Chen, R. T., & Wang, A. X. (2018). Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Nano Letters, 18(2), 1075-1081. doi:10.1021/acs.nanolett.7b04588
Li, E., Gao, Q., Liverman, S., & Wang, A. X. (2018). One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Optics Letters, 43(18), 4429. doi:10.1364/ol.43.004429
Amin, R., Maiti, R., Carfano, C., Ma, Z., Tahersima, M. H., Lilach, Y., … Sorger, V. J. (2018). 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics, 3(12), 126104. doi:10.1063/1.5052635
Gao, Q., Li, E., & Wang, A. X. (2018). Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photonics Research, 6(4), 277. doi:10.1364/prj.6.000277
Wood, M. G., Campione, S., Parameswaran, S., Luk, T. S., Wendt, J. R., Serkland, D. K., & Keeler, G. A. (2018). Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5(3), 233. doi:10.1364/optica.5.000233
Li, E., Nia, B. A., Zhou, B., & Wang, A. X. (2019). Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photonics Research, 7(4), 473. doi:10.1364/prj.7.000473
Parra, J., Olivares, I., Brimont, A., & Sanchis, P. (2019). Non-volatile epsilon-near-zero readout memory. Optics Letters, 44(16), 3932. doi:10.1364/ol.44.003932
Gui, Y., Miscuglio, M., Ma, Z., Tahersima, M. H., Sun, S., Amin, R., … Sorger, V. J. (2019). Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Scientific Reports, 9(1). doi:10.1038/s41598-019-47631-5
Xian, S., Nie, L., Qin, J., Kang, T., Li, C., Xie, J., … Bi, L. (2019). Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Optics Express, 27(20), 28618. doi:10.1364/oe.27.028618
Michelotti, F., Dominici, L., Descrovi, E., Danz, N., & Menchini, F. (2009). Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 μm. Optics Letters, 34(6), 839. doi:10.1364/ol.34.000839
Fang, X., & Yang, L. (2017). Thermal effect analysis of silicon microring optical switch for on-chip interconnect. Journal of Semiconductors, 38(10), 104004. doi:10.1088/1674-4926/38/10/104004
[-]