dc.contributor.author |
Aligia, Diego A.
|
es_ES |
dc.contributor.author |
Magallán, Guillermo A.
|
es_ES |
dc.contributor.author |
De Angelo, Cristian H.
|
es_ES |
dc.date.accessioned |
2020-05-15T06:28:51Z |
|
dc.date.available |
2020-05-15T06:28:51Z |
|
dc.date.issued |
2017-12-05 |
|
dc.identifier.issn |
1697-7912 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/143354 |
|
dc.description.abstract |
[ES] En este trabajo se propone una estrategia de control de tracción para un vehículo eléctrico de cuatro ruedas, basada en observadores no lineales que permiten estimar la fuerza máxima que se puede transferir al suelo. El conocimiento de la fuerza máxima permite realizar un control del deslizamiento de los neumáticos de tracción, evitando que las ruedas patinen aún en superficies de baja adherencia. La estrategia propuesta permite además evitar que se produzca un momento de guiño no deseado en el vehículo cuando las condiciones de suelo a cada lado del mismo son diferentes. Con ello se logra mejorar la eficiencia y el control del vehículo, evitando posibles pérdidas de estabilidad que pueden resultar en riesgos para sus ocupantes. Tanto el observador como el control propuestos son diseñados en base a un modelo dinámico rotacional de la rueda y un modelo de fuerzas de brush. Se presentan resultados de simulación obtenidos empleando un modelo completo de vehículo sobre la plataforma Simulink/CarSim. |
es_ES |
dc.description.abstract |
[EN] A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform. |
es_ES |
dc.description.sponsorship |
Este trabajo fue financiado por la Universidad Nacional de
Rıo Cuarto, FONCyT-ANPCyT (Subsidio PICT-2014-2760) y CONICET (Subsidio PIP 2014-2016 GI 11220130100517CO). |
es_ES |
dc.language |
Español |
es_ES |
dc.publisher |
Universitat Politècnica de València |
es_ES |
dc.relation.ispartof |
Revista Iberoamericana de Automática e Informática industrial |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Traction control |
es_ES |
dc.subject |
Road condition |
es_ES |
dc.subject |
Friction coefficient |
es_ES |
dc.subject |
Brush tyre model |
es_ES |
dc.subject |
Feedback linearization |
es_ES |
dc.subject |
Nolinear Luenberger observer |
es_ES |
dc.subject |
Control de tracción |
es_ES |
dc.subject |
Condición de suelo |
es_ES |
dc.subject |
Coeficiente de rozamiento |
es_ES |
dc.subject |
Modelo de neumático brush |
es_ES |
dc.subject |
Linealización exacta por realimentación |
es_ES |
dc.subject |
Observador no lineal de Luenberger |
es_ES |
dc.title |
Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales |
es_ES |
dc.title.alternative |
Traction control of an electric vehicle based on nonlinear observers |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.4995/riai.2017.8736 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/FonCyT//PICT-2014-2760/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CONICET//PIP 11220130100517CO/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.description.bibliographicCitation |
Aligia, DA.; Magallán, GA.; De Angelo, CH. (2017). Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales. Revista Iberoamericana de Automática e Informática industrial. 15(1):112-123. https://doi.org/10.4995/riai.2017.8736 |
es_ES |
dc.description.accrualMethod |
OJS |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.4995/riai.2017.8736 |
es_ES |
dc.description.upvformatpinicio |
112 |
es_ES |
dc.description.upvformatpfin |
123 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
15 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.eissn |
1697-7920 |
|
dc.relation.pasarela |
OJS\8736 |
es_ES |
dc.contributor.funder |
Universidad Nacional de Río Cuarto |
es_ES |
dc.contributor.funder |
Fondo para la Investigación Científica y Tecnológica, Argentina |
es_ES |
dc.contributor.funder |
Agencia Nacional de Promoción Científica y Tecnológica, Argentina |
es_ES |
dc.contributor.funder |
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina |
es_ES |
dc.description.references |
Baet, G., Charara, A., Dherbomez, G., 2007. An observer of tire-road forcesand friction for active security vehicle systems. IEEE/ASME Transactionson Mechatronics 12 (6), 651-661. |
es_ES |
dc.description.references |
Biagiola, S., Solsona, J., 2006. State estimation in batch processes using a non-linear observer. Mathematical and Computer Modelling 44 (11-12), 1009-1024. https://doi.org/10.1016/j.mcm.2006.03.005 |
es_ES |
dc.description.references |
Changsun, A., Huei, P., Tseng, H. E., 2013. Robust estimation of road frictional coefficient. IEEE Transactions on Control Systems Technology 21 (1), 1-13. https://doi.org/10.1109/TCST.2011.2170838 |
es_ES |
dc.description.references |
Chankyu, L., Hedrick, K., Kyongsu, Y., 2004. Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE/ASME Trans. on Mechatronics 9 (2), 454-458. https://doi.org/10.1109/TMECH.2004.828622 |
es_ES |
dc.description.references |
Choi, M., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906-2918. https://doi.org/10.1109/TVT.2013.2260190 |
es_ES |
dc.description.references |
Dejun, Y., Sehoon, O., Hori, Y., 2009. A novel traction control for EV based on maximum transmissible torque estimation. IEEE Transactions on Industrial Electronics 56 (6), 2086-2094. https://doi.org/10.1109/TIE.2009.2016507 |
es_ES |
dc.description.references |
Delli Colli, V., Tomassi, G., Scarano, M., 2006. Single wheel longitudinal traction control for electric vehicles. IEEE Transactions on Power Electronics21 (3), 799-808. https://doi.org/10.1109/TPEL.2006.872363 |
es_ES |
dc.description.references |
Fernández, R., Aracil, R., Armada, M., 2012. Control de tracción en robots móviles con ruedas. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 9 (4), 393-405. https://doi.org/10.1016/j.riai.2012.09.008 |
es_ES |
dc.description.references |
Gustafsson, F., 1997. Slip-based tire-road friction estimation. Automatica 33 (6), 1087-1099. https://doi.org/10.1016/S0005-1098(97)00003-4 |
es_ES |
dc.description.references |
Hori, Y., Oct 2004. Future vehicle driven by electricity and control-research on four-wheel-motored "UOT electric march II". IEEE Transactions on Indus-trial Electronics 51 (5), 954-962. https://doi.org/10.1109/TIE.2004.834944 |
es_ES |
dc.description.references |
Hu, J.-S., Yin, D., Hori, Y., 2011. Fault-tolerant traction control of electric vehicles. Control Engineering Practice 19 (2), 204-213. https://doi.org/10.1016/j.conengprac.2010.11.012 |
es_ES |
dc.description.references |
Ivanov, V., Savitski, D., Shyrokau, B., Sept 2015. A survey of traction control and antilock braking systems of full electric vehicles with individually con-trolled electric motors. IEEE Transactions on Vehicular Technology 64 (9), 3878-3896. https://doi.org/10.1109/TVT.2014.2361860 |
es_ES |
dc.description.references |
Kuntanapreeda, S., 2014. Traction control of electric vehicles using sliding-mode controller with tractive force observer. International Journal of Vehicular Technology 2014. https://doi.org/10.1155/2014/829097 |
es_ES |
dc.description.references |
Li, L., Yang, K., Jia, G., Ran, X., Song, J., Han, Z.-Q., 2015. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations. Mechanical Systems and Signal Processing 56, 259-276. https://doi.org/10.1016/j.ymssp.2014.10.006 |
es_ES |
dc.description.references |
Loeb, J. S., Guenther, D. A., Chen, H.-H. F., Ellis, J. R., 1990. Lateral stiness, cornering stiness and relaxation length of the pneumatic tire. Tech. rep., SAE Technical Paper. |
es_ES |
dc.description.references |
Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2009. A neighbourhood-electric vehicle development with individual traction on rear wheels. Inter-national Journal of Electric and Hybrid Vehicles 2 (2), 115-136. https://doi.org/10.1504/IJEHV.2009.029037 |
es_ES |
dc.description.references |
Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2011. Maximization of the traction forces in a 2wd electric vehicle. IEEE Transactions on Vehicular Technology 60 (2), 369-380. https://doi.org/10.1109/TVT.2010.2091659 |
es_ES |
dc.description.references |
Mooryong, C., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906-2918. https://doi.org/10.1109/TVT.2013.2260190 |
es_ES |
dc.description.references |
Pacejka, H. B., 2005. Tyre and vehicle dynamics, 2nd Edition. Elsevier. |
es_ES |
dc.description.references |
Pacejka, H. B., Sharp, R. S., 1991. Shear force development by pneumatic ty-res in steady state conditions: a review of modelling aspects. Vehicle system dynamics 20 (3-4), 121-175. https://doi.org/10.1080/00423119108968983 |
es_ES |
dc.description.references |
Rajamani, R., 2011. Vehicle dynamics and control. Springer. |
es_ES |
dc.description.references |
Rajamani, R., Phanomchoeng, G., Piyabongkarn, D., Lew, J. Y., 2012. Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Transactions on Mechatronics 17 (6), 1183-1195. https://doi.org/10.1109/TMECH.2011.2159240 |
es_ES |
dc.description.references |
Sanghyun, H., Hedrick, J. K., 2013. Tire-road friction coefficient estimation with vehicle steering. In: 2013 IEEE Intelligent Vehicles Symposium. Pp.1227-1232. |
es_ES |
dc.description.references |
Serrano-Iribarnegaray, L., Martinez-Roman, J., Aug 2007. A unified approach to the very fast torque control methods for DC and AC machines. IEEE Transactions on Industrial Electronics 54 (4), 2047-2056. https://doi.org/10.1109/TIE.2007.895148 |
es_ES |
dc.description.references |
Singh, K. B., Taheri, S., 2015. Estimation of tire-road friction coefficient and its application in chassis control systems. Systems Science & Control Engineering 3 (1), 39-61. https://doi.org/10.1080/21642583.2014.985804 |
es_ES |
dc.description.references |
Sui, D., Johansen, T. A., 2010. Moving horizon estimation for tire-road friction during braking. In: 2010 IEEE International Conference on Control Applications (CCA). pp. 1379-1384. https://doi.org/10.1109/CCA.2010.5611307 |
es_ES |
dc.description.references |
Tesheng, H., 2013a. Direct longitudinal tire force control under simultaneous acceleration/deceleration and turning. In: American Control Conference (ACC), 2013. pp. 2147-2152. https://doi.org/10.1109/ACC.2013.6580153 |
es_ES |
dc.description.references |
Tesheng, H., 2013b. Robust estimation and control of tire traction forces. IEEE Transactions on Vehicular Technology 62 (3), 1378-1383. https://doi.org/10.1109/TVT.2012.2230656 |
es_ES |
dc.description.references |
Wanki, C., Jangyeol, Y., Seongjin, Y., Bongyeong, K., Kyongsu, Y., 2010.Estimation of tire forces for application to vehicle stability control. IEEE Transactions on Vehicular Technology 59 (2), 638-649 https://doi.org/10.1109/TVT.2009.2034268 |
es_ES |