- -

Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aligia, Diego A. es_ES
dc.contributor.author Magallán, Guillermo A. es_ES
dc.contributor.author De Angelo, Cristian H. es_ES
dc.date.accessioned 2020-05-15T06:28:51Z
dc.date.available 2020-05-15T06:28:51Z
dc.date.issued 2017-12-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143354
dc.description.abstract [ES] En este trabajo se propone una estrategia de control de tracción para un vehículo eléctrico de cuatro ruedas, basada en observadores no lineales que permiten estimar la fuerza máxima que se puede transferir al suelo. El conocimiento de la fuerza máxima permite realizar un control del deslizamiento de los neumáticos de tracción, evitando que las ruedas patinen aún en superficies de baja adherencia. La estrategia propuesta permite además evitar que se produzca un momento de guiño no deseado en el vehículo cuando las condiciones de suelo a cada lado del mismo son diferentes. Con ello se logra mejorar la eficiencia y el control del vehículo, evitando posibles pérdidas de estabilidad que pueden resultar en riesgos para sus ocupantes. Tanto el observador como el control propuestos son diseñados en base a un modelo dinámico rotacional de la rueda y un modelo de fuerzas de brush. Se presentan resultados de simulación obtenidos empleando un modelo completo de vehículo sobre la plataforma Simulink/CarSim. es_ES
dc.description.abstract [EN] A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform. es_ES
dc.description.sponsorship Este trabajo fue financiado por la Universidad Nacional de Rıo Cuarto, FONCyT-ANPCyT (Subsidio PICT-2014-2760) y CONICET (Subsidio PIP 2014-2016 GI 11220130100517CO). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Traction control es_ES
dc.subject Road condition es_ES
dc.subject Friction coefficient es_ES
dc.subject Brush tyre model es_ES
dc.subject Feedback linearization es_ES
dc.subject Nolinear Luenberger observer es_ES
dc.subject Control de tracción es_ES
dc.subject Condición de suelo es_ES
dc.subject Coeficiente de rozamiento es_ES
dc.subject Modelo de neumático brush es_ES
dc.subject Linealización exacta por realimentación es_ES
dc.subject Observador no lineal de Luenberger es_ES
dc.title Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales es_ES
dc.title.alternative Traction control of an electric vehicle based on nonlinear observers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2017.8736
dc.relation.projectID info:eu-repo/grantAgreement/FonCyT//PICT-2014-2760/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 11220130100517CO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aligia, DA.; Magallán, GA.; De Angelo, CH. (2017). Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales. Revista Iberoamericana de Automática e Informática industrial. 15(1):112-123. https://doi.org/10.4995/riai.2017.8736 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2017.8736 es_ES
dc.description.upvformatpinicio 112 es_ES
dc.description.upvformatpfin 123 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8736 es_ES
dc.contributor.funder Universidad Nacional de Río Cuarto es_ES
dc.contributor.funder Fondo para la Investigación Científica y Tecnológica, Argentina es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.description.references Baet, G., Charara, A., Dherbomez, G., 2007. An observer of tire-road forcesand friction for active security vehicle systems. IEEE/ASME Transactionson Mechatronics 12 (6), 651-661. es_ES
dc.description.references Biagiola, S., Solsona, J., 2006. State estimation in batch processes using a non-linear observer. Mathematical and Computer Modelling 44 (11-12), 1009-1024. https://doi.org/10.1016/j.mcm.2006.03.005 es_ES
dc.description.references Changsun, A., Huei, P., Tseng, H. E., 2013. Robust estimation of road frictional coefficient. IEEE Transactions on Control Systems Technology 21 (1), 1-13. https://doi.org/10.1109/TCST.2011.2170838 es_ES
dc.description.references Chankyu, L., Hedrick, K., Kyongsu, Y., 2004. Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE/ASME Trans. on Mechatronics 9 (2), 454-458. https://doi.org/10.1109/TMECH.2004.828622 es_ES
dc.description.references Choi, M., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906-2918. https://doi.org/10.1109/TVT.2013.2260190 es_ES
dc.description.references Dejun, Y., Sehoon, O., Hori, Y., 2009. A novel traction control for EV based on maximum transmissible torque estimation. IEEE Transactions on Industrial Electronics 56 (6), 2086-2094. https://doi.org/10.1109/TIE.2009.2016507 es_ES
dc.description.references Delli Colli, V., Tomassi, G., Scarano, M., 2006. Single wheel longitudinal traction control for electric vehicles. IEEE Transactions on Power Electronics21 (3), 799-808. https://doi.org/10.1109/TPEL.2006.872363 es_ES
dc.description.references Fernández, R., Aracil, R., Armada, M., 2012. Control de tracción en robots móviles con ruedas. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 9 (4), 393-405. https://doi.org/10.1016/j.riai.2012.09.008 es_ES
dc.description.references Gustafsson, F., 1997. Slip-based tire-road friction estimation. Automatica 33 (6), 1087-1099. https://doi.org/10.1016/S0005-1098(97)00003-4 es_ES
dc.description.references Hori, Y., Oct 2004. Future vehicle driven by electricity and control-research on four-wheel-motored "UOT electric march II". IEEE Transactions on Indus-trial Electronics 51 (5), 954-962. https://doi.org/10.1109/TIE.2004.834944 es_ES
dc.description.references Hu, J.-S., Yin, D., Hori, Y., 2011. Fault-tolerant traction control of electric vehicles. Control Engineering Practice 19 (2), 204-213. https://doi.org/10.1016/j.conengprac.2010.11.012 es_ES
dc.description.references Ivanov, V., Savitski, D., Shyrokau, B., Sept 2015. A survey of traction control and antilock braking systems of full electric vehicles with individually con-trolled electric motors. IEEE Transactions on Vehicular Technology 64 (9), 3878-3896. https://doi.org/10.1109/TVT.2014.2361860 es_ES
dc.description.references Kuntanapreeda, S., 2014. Traction control of electric vehicles using sliding-mode controller with tractive force observer. International Journal of Vehicular Technology 2014. https://doi.org/10.1155/2014/829097 es_ES
dc.description.references Li, L., Yang, K., Jia, G., Ran, X., Song, J., Han, Z.-Q., 2015. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations. Mechanical Systems and Signal Processing 56, 259-276. https://doi.org/10.1016/j.ymssp.2014.10.006 es_ES
dc.description.references Loeb, J. S., Guenther, D. A., Chen, H.-H. F., Ellis, J. R., 1990. Lateral stiness, cornering stiness and relaxation length of the pneumatic tire. Tech. rep., SAE Technical Paper. es_ES
dc.description.references Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2009. A neighbourhood-electric vehicle development with individual traction on rear wheels. Inter-national Journal of Electric and Hybrid Vehicles 2 (2), 115-136. https://doi.org/10.1504/IJEHV.2009.029037 es_ES
dc.description.references Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2011. Maximization of the traction forces in a 2wd electric vehicle. IEEE Transactions on Vehicular Technology 60 (2), 369-380. https://doi.org/10.1109/TVT.2010.2091659 es_ES
dc.description.references Mooryong, C., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906-2918. https://doi.org/10.1109/TVT.2013.2260190 es_ES
dc.description.references Pacejka, H. B., 2005. Tyre and vehicle dynamics, 2nd Edition. Elsevier. es_ES
dc.description.references Pacejka, H. B., Sharp, R. S., 1991. Shear force development by pneumatic ty-res in steady state conditions: a review of modelling aspects. Vehicle system dynamics 20 (3-4), 121-175. https://doi.org/10.1080/00423119108968983 es_ES
dc.description.references Rajamani, R., 2011. Vehicle dynamics and control. Springer. es_ES
dc.description.references Rajamani, R., Phanomchoeng, G., Piyabongkarn, D., Lew, J. Y., 2012. Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Transactions on Mechatronics 17 (6), 1183-1195. https://doi.org/10.1109/TMECH.2011.2159240 es_ES
dc.description.references Sanghyun, H., Hedrick, J. K., 2013. Tire-road friction coefficient estimation with vehicle steering. In: 2013 IEEE Intelligent Vehicles Symposium. Pp.1227-1232. es_ES
dc.description.references Serrano-Iribarnegaray, L., Martinez-Roman, J., Aug 2007. A unified approach to the very fast torque control methods for DC and AC machines. IEEE Transactions on Industrial Electronics 54 (4), 2047-2056. https://doi.org/10.1109/TIE.2007.895148 es_ES
dc.description.references Singh, K. B., Taheri, S., 2015. Estimation of tire-road friction coefficient and its application in chassis control systems. Systems Science & Control Engineering 3 (1), 39-61. https://doi.org/10.1080/21642583.2014.985804 es_ES
dc.description.references Sui, D., Johansen, T. A., 2010. Moving horizon estimation for tire-road friction during braking. In: 2010 IEEE International Conference on Control Applications (CCA). pp. 1379-1384. https://doi.org/10.1109/CCA.2010.5611307 es_ES
dc.description.references Tesheng, H., 2013a. Direct longitudinal tire force control under simultaneous acceleration/deceleration and turning. In: American Control Conference (ACC), 2013. pp. 2147-2152. https://doi.org/10.1109/ACC.2013.6580153 es_ES
dc.description.references Tesheng, H., 2013b. Robust estimation and control of tire traction forces. IEEE Transactions on Vehicular Technology 62 (3), 1378-1383. https://doi.org/10.1109/TVT.2012.2230656 es_ES
dc.description.references Wanki, C., Jangyeol, Y., Seongjin, Y., Bongyeong, K., Kyongsu, Y., 2010.Estimation of tire forces for application to vehicle stability control. IEEE Transactions on Vehicular Technology 59 (2), 638-649 https://doi.org/10.1109/TVT.2009.2034268 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem