- -

Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonin-Font, Francisco es_ES
dc.contributor.author Coll Gomila, Carles es_ES
dc.contributor.author Oliver Codina, Gabriel es_ES
dc.date.accessioned 2020-05-15T07:12:24Z
dc.date.available 2020-05-15T07:12:24Z
dc.date.issued 2017-12-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143357
dc.description.abstract [ES] Este artículo presenta los resultados de un estudio experimental exhaustivo que determina el tipo de características visuales que presentan una mayor robustez, estabilidad y trazabilidad en imágenes submarinas tomadas en entornos colonizados con Posidonia Oceanica (P.O.), sean consecutivas o que cierran bucles (imágenes que muestran una misma área, parcial o totalmente, tomadas en tiempos distintos, desde puntos de vista distintos o incluso en condiciones de iluminación diferentes). El trabajo se ha centrado en dos puntos fundamentales: a) evaluar la capacidad que pueden tener varias técnicas de aumento de contraste en imágenes con P.O. a la hora de aumentar el número y calidad de las características visuales, y b) encontrar la combinación detector/descriptor invariante a rotación y traslación, que maximiza el número de correspondencias inliers usadas posteriormente para el cálculo de la odometria visual, o en el registro de imágenes que cierran bucles. es_ES
dc.description.abstract [EN] This paper presents an exhaustive, extensive and detailed experimental assessment of different types of visual key-points in terms of robustness, stability and traceability, in images taken in marine areas densely colonized with Posidonia Oceanica (P.O.). This work has been focused mainly in two issues: a) evaluating the  capacity of several image color and contrast enhancing preprocessing techniques to increase the image quality and the number of stable features, and b) finding the pair feature detector/descriptor, from a wide range of different combinations, that maximizes the number of inlier correspondences in consecutive frames or frames that close a loop (images that overlap, taken at distant time instants, from different viewpoints or even with different environmental conditions). Conclusions extracted from both evaluations will affect directly the quality of visual odometers and/or the image registration processes involved in visual SLAM approaches.  es_ES
dc.description.sponsorship Ministerio de Economía y Competitividad a través del proyecto TIN2014- 58662-R y fondos FEDER es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Autonomous Mobile Robots es_ES
dc.subject Robot Navigation es_ES
dc.subject Robot Vision es_ES
dc.subject Visual Motion es_ES
dc.subject Sistemas de navegación es_ES
dc.subject Robot submarino autónomo es_ES
dc.subject Navegación del robot es_ES
dc.subject Visión del robot es_ES
dc.subject Odometría visual es_ES
dc.title Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica es_ES
dc.title.alternative Towards Visual Navigation of an Autonomous Underwater Vehicle in Areas with Posidonia Oceanica es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2017.8828
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-58662-R/ES/AUGMENTED REALITY SUBSEA EXPLORATION ASSISTANT (ARSEA): UNA HERRAMIENTA PARA LA INSPECCION ASISTIDA Y LA RECONSTRUCCION 3D ON-LINE DE ENTORNOS SUBMARINOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bonin-Font, F.; Coll Gomila, C.; Oliver Codina, G. (2017). Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica. Revista Iberoamericana de Automática e Informática industrial. 15(1):24-35. https://doi.org/10.4995/riai.2017.8828 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2017.8828 es_ES
dc.description.upvformatpinicio 24 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8828 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Bonin-Font, F., Massot, M., Negre, P. L., Oliver, G., Guerrero, E., Garcia, E., 2017. Towards a new Methodology to Evaluate the Environmental Impact of a Marine Outfall Using a Lightweight AUV. En: In MTS/IEEE Oceans. https://doi.org/10.1109/OCEANSE.2017.8084578 es_ES
dc.description.references Bonin-Font, F., Massot-Campos, M., Oliver, G., 2016. Towards Visual Detection, Mapping and Quantification of Posidonia Oceanica using a Lightweight AUV. En: Proc. of IFAC Conference on Control Applications in Marine Systems. pp. 500-505. es_ES
dc.description.references Burguera, A., Bonin-Font, F., Oliver, G., 2015. Trajectory-Based Visual Localization in Underwater Surveying Missions. Sensors, MDPI 15 (1), 1708-1735. https://doi.org/10.3390/s150101708 es_ES
dc.description.references Carreras, M., Candela, C., Ribas, D., Mallios, A., MagA˜, L., Vidal, E., Palomeras, N., Ridao, P., 2013. SPARUS II, Design of a Lightweight Hovering AUV. Fifth International Workshop in Marine Technology (MARTECH). es_ES
dc.description.references Diaz-Almela, E., Duarte, C., 2008. Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Tech. rep., European Commission. es_ES
dc.description.references Eustice, R., Pizarro, O., Singh, H., April 2008. Visually Augmented Navigation for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering 33 (2), 103-122. https://doi.org/10.1109/JOE.2008.923547 es_ES
dc.description.references Eustice, R., Pizarro, O., Singh, H., Howland, J., 2002. UWIT: Underwater Image Toolbox for Optical Image Processing and Mosaicking in MATLAB. En: Proceedings of IEEE International Symposium on Underwater Technology,. pp. 141-145. https://doi.org/10.1109/UT.2002.1002415 es_ES
dc.description.references Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G., 2016. A Survey on Realtime Motion Estimation Techniques for Underwater Robots. Journal of Real Time Image Processing 11 (4), 693-711. https://doi.org/10.1007/s11554-014-0416-z es_ES
dc.description.references Fischler, M., Bolles, R., 1981. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24 (6), 381-395. https://doi.org/10.1145/358669.358692 es_ES
dc.description.references Geiger, A., Ziegler, J., Stiller, C., June 2011. Stereoscan: Dense 3d reconstruction in real-time. En: IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany. https://doi.org/10.1109/IVS.2011.5940405 es_ES
dc.description.references Hanley, J., Neil, B. M., 1982. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 143 (1), 521-539. https://doi.org/10.1148/radiology.143.1.7063747 es_ES
dc.description.references Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press. es_ES
dc.description.references Jobson, D., Rahman, Z., Woodell, G., 1997. A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes. IEEE Transactions on Image Processing 6 (7), 965-976. https://doi.org/10.1109/83.597272 es_ES
dc.description.references Jorda, G., Marba, N., Duarte, C., 2012. Mediterranean Seagrass Vulnerable to Regional Climate Warming. Nature Climate Change, 821-824. https://doi.org/10.1038/nclimate1533 es_ES
dc.description.references Krig, S., 2014. Computer Vision Metrics. Springer, Ch. Interest Point Detector and Feature Descriptor Survey, pp. 217-282. https://doi.org/10.1007/978-1-4302-5930-5 es_ES
dc.description.references Lauga, P., Valenzise, G., Chierchia, G., Dufaux, F., September 2014. Improved Tone Mapping Operator for HDR Coding Optimizing the Distortion/Spatial Complexity Trade-off. En: Proceedings of IEEE European Signal Processing Conference. pp. 1607-1611. es_ES
dc.description.references Li, Y., Wang, S., Tian, Q., Ding, X., 2015. A Survey of Recent Advances in Visual Feature Detection. Neurocomputing (B), 736-751. es_ES
dc.description.references Maida, G. D., Tomasello, A., Luzzu, F., Scannavino, A., Pirrotta, M., Orestano, C., Calvo, S., 2011. Discriminating Between Posidonia Oceanica Meadows and Sand Substratum Using Multibeam Sonar. ICES Journal of Marine Science 68 (1), 12-19. https://doi.org/10.1093/icesjms/fsq130 es_ES
dc.description.references Matarrese, R., Acquaro, M., Morea, A., Tijani, K., Chiaradia, M., 2008. Applications of Remote Sensing Techniques for Mapping Posidonia Oceanica Meadows. En: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. pp. 906-909. https://doi.org/10.1109/IGARSS.2008.4779870 es_ES
dc.description.references Montefalcone, M., Rovere, A., Parravicini, V., Albertelli, G., Morri, C., Bianchi, C. N., 2013. Evaluating Change in Seagrass Meadows: A time-framed Comparison of Side Scan Sonar Maps. Aquatic Botany 104, 204-212. https://doi.org/10.1016/j.aquabot.2011.05.009 es_ES
dc.description.references Moore, A., Allman, J., Goodman, R. M., 1991. A Real-time Neural System for Color Constancy. IEEE Transactions on Neural Networks 2 (2), 237-246. https://doi.org/10.1109/72.80334 es_ES
dc.description.references Morel, J., Petro, A. B., Sbert, C., 2014. What is the Right Center/Surround for Retinex? En: Proceedings of the International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2014.7025923 es_ES
dc.description.references Mur-Artal, R., Montiel, J., Tardos, J., October 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31 (5), 1147-1163. https://doi.org/10.1109/TRO.2015.2463671 es_ES
dc.description.references Negre, P. L., Bonin-Font, F., Oliver, G., May 2016a. Cluster-Based Loop Closing Detection for Underwater SLAM in Feature-Poor Regions. En: Proc. Of IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487416 es_ES
dc.description.references Negre, P. L., Bonin-Font, F., Oliver, G., 2016b. Global Image Signature for Visual Loop-Closure Detection. Autonomous Robots 40 (8), 1403-1417. https://doi.org/10.1007/s10514-015-9522-4 es_ES
dc.description.references Scaradozzi, D., Conte, G., de Capua, G., Sorbi, L., Luciani, C., de Cecco, P., Sorci, A., 2009. Innovative Technology for Studying Growth Areas of Posidonia Oceanica. En: Proceedings of the IEEE WorkShop on Environmental, Energy and Structural Monitoring Systems. pp. 71-75. https://doi.org/10.1109/EESMS.2009.5341312 es_ES
dc.description.references Shertzer, K., Prager, M., 2002. Least Median of Squares: A Suitable Objective Function for Stock Assessment Models. Canadian Journal of Fisheres and Aquatic Sciences 59 (9), 1474-1481 Vol.2. es_ES
dc.description.references Short, F., Polidoro, B., Livingstone, S., Carpenter, K., Bandeira, S., Bujang, J., Calumpong, H., Carruthers, T., Coles, R., Dennison, W., Erftemeijer, P., Fortes, M., Freeman, A., Jagtap, T., Kamal, A., Kendrick, G., Kenworthy, W., Nafie, Y. L., Nasution, I., Orth, R., Prathep, A., van Sanciangco, J., Tussenbroek, B., Vergara, S., Waycott, M., Zieman, J., 2012. Estinction Risk Assessment of the World Seagrass Species Biological Conservation. Canadian Journal of Fisheries and Aquatic Sciences 144 (1961-1971). es_ES
dc.description.references Wilow-Garage, 2014. Open Source Computer Vision (Open Cv). http://docs.opencv.org/ , function findhomography. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem