- -

Control de Modelos Max Plus Lineales con Restricciones Temporales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de Modelos Max Plus Lineales con Restricciones Temporales

Mostrar el registro completo del ítem

Cárdenas, C.; Cardillo, J.; Loiseau, J.; Martínez, C. (2016). Control de Modelos Max Plus Lineales con Restricciones Temporales. Revista Iberoamericana de Automática e Informática industrial. 13(4):438-449. https://doi.org/10.1016/j.riai.2016.07.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143556

Ficheros en el ítem

Metadatos del ítem

Título: Control de Modelos Max Plus Lineales con Restricciones Temporales
Otro titulo: Control Problem in Max Plus Linear Model with Temporal Constraints
Autor: Cárdenas, C. Cardillo, J. Loiseau, J.J. Martínez, C.
Fecha difusión:
Resumen:
[ES] Este artículo trata del control de sistemas de eventos discretos sujetos a sincronización y fenómenos de retraso, descritos por un modelo max plus lineal. Definimos y caracterizamos el conjunto de condiciones iniciales ...[+]


[EN] This article deals with the control of discrete event systems subject to synchronization and delay phenomena, described by a plus max linear model. The temporal constraints are imposed on the state space of the system. ...[+]
Palabras clave: Discrete Event Systems , Timed Event Graphs , Max Plus Algebra , Temporal Constraints , Sistemas de Eventos Discretos (SED) , Grafos de Eventos Temporizados (GETs) , Algebra Max Plus , Restricciones Temporales
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2016.07.001
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2016.07.001
Tipo: Artículo

References

Allamigeon, X., Gaubert, S., Goubault, E., 2010. "The tropical double descrip- ' tion method", in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58.

Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ' vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom.

Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467. [+]
Allamigeon, X., Gaubert, S., Goubault, E., 2010. "The tropical double descrip- ' tion method", in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58.

Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ' vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom.

Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467.

Atto A., Martinez C., Amari S., 2011. Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant. Comput Inf Syst 61(4):1149-1159.

Baccelli, F., Cohen, G., Olsder, G.-J., Quadrat, J.-P., 1992. Synchronization and Linearity. John Wiley & Sons, New York.

Cohen, G., Gaubert, S., Quadrat, J. P.,1999. "Max-plus algebra and system theory: where we are and where to go now,"Annu. Rev. Control, vol. 23, pp. 207-219.

Cohen, G., 2001. Analisis ' y Control de sistemas de eventos discretos: De redes de Petri temporizadas. Argentina: ENPC & INRIA (Francia).

Gaubert, S., Katz, R., 2007. The Minkowski theorem for max-plus convex sets. Linear Algebra and Appl., 421:356-369.

Gaubert, S., Katz, R., 2009. The tropical analogue of polar cones. Linear Algebra and Appl., 431:608-625.

Gaubert, S., Katz, R., 2011. Minimal half-spaces and external representation of tropical polyhedra, Journal of Algebraic Combinatorics 33, no. 3, 325348.

Katz, R. D., 2007. Max-plus (A,B)-invariant spaces and control of timed discrete-event systems, IEEE Trans. Automatic Control, Vol. 52, No. 2, pp. 229-241.

Kim, J. H., Lee, T. E. 2003. Schedule stabilization and robust timing control for time-constrained cluster tools. In IEEE international conference on robotics and automation, pp. 1039-1044. Taipei, Taiwan.

Libeaut, L., Loiseau, J., 1995. Admissible initial conditions and control of timed event graphs, 34th Conference on Decision and Control, New Orleans, Louisianna.

Maia, C., Andrade, C., Hardouin, L., 2011. On the control of max plus linear system subject to state restriction. Automatica 47(5): 988-992.

Murata, T., 1989. Petri nets: Properties, analysis and applications. IEEE, Proc 77(4), 541-580.

Wonham, W. M., Linear Multivariable Control: A Geometric Approach, 3rd ed. New York: Springer-Verlag.

Wu, N., Chu, C., Chu, F., Zhou, M. 2008. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf., vol. 21, pp. 224-237.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem