Allamigeon, X., Gaubert, S., Goubault, E., 2010. "The tropical double descrip- ' tion method", in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58.
Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ' vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom.
Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467.
[+]
Allamigeon, X., Gaubert, S., Goubault, E., 2010. "The tropical double descrip- ' tion method", in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58.
Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ' vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom.
Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467.
Atto A., Martinez C., Amari S., 2011. Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant. Comput Inf Syst 61(4):1149-1159.
Baccelli, F., Cohen, G., Olsder, G.-J., Quadrat, J.-P., 1992. Synchronization and Linearity. John Wiley & Sons, New York.
Cohen, G., Gaubert, S., Quadrat, J. P.,1999. "Max-plus algebra and system theory: where we are and where to go now,"Annu. Rev. Control, vol. 23, pp. 207-219.
Cohen, G., 2001. Analisis ' y Control de sistemas de eventos discretos: De redes de Petri temporizadas. Argentina: ENPC & INRIA (Francia).
Gaubert, S., Katz, R., 2007. The Minkowski theorem for max-plus convex sets. Linear Algebra and Appl., 421:356-369.
Gaubert, S., Katz, R., 2009. The tropical analogue of polar cones. Linear Algebra and Appl., 431:608-625.
Gaubert, S., Katz, R., 2011. Minimal half-spaces and external representation of tropical polyhedra, Journal of Algebraic Combinatorics 33, no. 3, 325348.
Katz, R. D., 2007. Max-plus (A,B)-invariant spaces and control of timed discrete-event systems, IEEE Trans. Automatic Control, Vol. 52, No. 2, pp. 229-241.
Kim, J. H., Lee, T. E. 2003. Schedule stabilization and robust timing control for time-constrained cluster tools. In IEEE international conference on robotics and automation, pp. 1039-1044. Taipei, Taiwan.
Libeaut, L., Loiseau, J., 1995. Admissible initial conditions and control of timed event graphs, 34th Conference on Decision and Control, New Orleans, Louisianna.
Maia, C., Andrade, C., Hardouin, L., 2011. On the control of max plus linear system subject to state restriction. Automatica 47(5): 988-992.
Murata, T., 1989. Petri nets: Properties, analysis and applications. IEEE, Proc 77(4), 541-580.
Wonham, W. M., Linear Multivariable Control: A Geometric Approach, 3rd ed. New York: Springer-Verlag.
Wu, N., Chu, C., Chu, F., Zhou, M. 2008. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf., vol. 21, pp. 224-237.
[-]