- -

Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable

Show full item record

Sánchez-Alonso, RE.; González Barbosa, JJ.; Castillo Castañeda, E.; García Murillo, MA. (2016). Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable. Revista Iberoamericana de Automática e Informática industrial. 13(2):247-257. https://doi.org/10.1016/j.riai.2015.07.007

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143566

Files in this item

Item Metadata

Title: Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable
Secondary Title: Kinematic Analysis of a Novel Reconfigurable Parallel Robot
Author: Sánchez-Alonso, Róger E. González Barbosa, José Joel Castillo Castañeda, Eduardo García Murillo, Mario A.
Issued date:
Abstract:
[EN] This work presents the kinematic analysis of a reconfigurable manipulator composed of two parallel sub-manipulators that share a common moving platform. A semi-closed form solution is easily obtained to solve the ...[+]


[ES] Este trabajo presenta el análisis cinemático de un manipulador reconfigurable integrado por dos sub-manipuladores paralelos que comparten una plataforma móvil. Una solución en forma semi-cerrada para el análisis directo ...[+]
Subjects: Parallel robot , Reconfiguration , Kinematics , Screw theory , Jacobian matrix , Manipulability index , Robot paralelo , Reconfiguración , Cinemática , Teoría de tornillos , Matriz jacobiana , Índice de manipulabilidad
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.07.007
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.riai.2015.07.007
Type: Artículo

References

Bande, P., Seibt, M., Uhlmann, E., Saha, S. K., & Rao, P. V. M. (2005). Kinematics analyses of Dodekapod. Mechanism and Machine Theory, 40(6), 740-756. doi:10.1016/j.mechmachtheory.2004.11.006

Bonev, I. A., Zlatanov, D., & Gosselin, C. M. (2003). Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. Journal of Mechanical Design, 125(3), 573-581. doi:10.1115/1.1582878

Carbonari, L., Callegari, M., Palmieri, G., & Palpacelli, M.-C. (2014). A new class of reconfigurable parallel kinematic machines. Mechanism and Machine Theory, 79, 173-183. doi:10.1016/j.mechmachtheory.2014.04.011 [+]
Bande, P., Seibt, M., Uhlmann, E., Saha, S. K., & Rao, P. V. M. (2005). Kinematics analyses of Dodekapod. Mechanism and Machine Theory, 40(6), 740-756. doi:10.1016/j.mechmachtheory.2004.11.006

Bonev, I. A., Zlatanov, D., & Gosselin, C. M. (2003). Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. Journal of Mechanical Design, 125(3), 573-581. doi:10.1115/1.1582878

Carbonari, L., Callegari, M., Palmieri, G., & Palpacelli, M.-C. (2014). A new class of reconfigurable parallel kinematic machines. Mechanism and Machine Theory, 79, 173-183. doi:10.1016/j.mechmachtheory.2014.04.011

Chen, C.-T. (2012). Reconfiguration of a parallel kinematic manipulator for the maximum dynamic load-carrying capacity. Mechanism and Machine Theory, 54, 62-75. doi:10.1016/j.mechmachtheory.2012.03.002

Dasgupta, B., & Mruthyunjaya, T. S. (1998). Singularity-free path planning for the Stewart platform manipulator. Mechanism and Machine Theory, 33(6), 711-725. doi:10.1016/s0094-114x(97)00095-5

Du Plessis, L. J., & Snyman, J. A. (2006). An optimally re-configurable planar Gough–Stewart machining platform. Mechanism and Machine Theory, 41(3), 334-357. doi:10.1016/j.mechmachtheory.2005.05.007

Gallardo-Alvarado, J., Rico-Martínez, J. M., & Alici, G. (2006). Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory. Mechanism and Machine Theory, 41(9), 1048-1061. doi:10.1016/j.mechmachtheory.2005.10.012

Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Pérez-González, L., & Rico-Martínez, J. M. (2008). Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody System Dynamics, 20(4), 307-325. doi:10.1007/s11044-008-9121-7

Gan, D., Liao, Q., Dai, J. S., Wei, S., & Seneviratne, L. D. (2009). Forward displacement analysis of the general 6–6 Stewart mechanism using Gröbner bases. Mechanism and Machine Theory, 44(9), 1640-1647. doi:10.1016/j.mechmachtheory.2009.01.008

Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660

Husty, M. L. (1996). An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mechanism and Machine Theory, 31(4), 365-379. doi:10.1016/0094-114x(95)00091-c

Jiang, Q., & Gosselin, C. M. (2009). Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform. Mechanism and Machine Theory, 44(6), 1281-1293. doi:10.1016/j.mechmachtheory.2008.07.005

Kong, X. (2014). Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method. Mechanism and Machine Theory, 74, 188-201. doi:10.1016/j.mechmachtheory.2013.12.010

Kumar, S. G., Nagarajan, T., & Srinivasa, Y. G. (2009). Characterization of reconfigurable Stewart platform for contour generation. Robotics and Computer-Integrated Manufacturing, 25(4-5), 721-731. doi:10.1016/j.rcim.2008.06.001

Freire, M. A. L., Sánchez, E., Tejada, S., & Díez, R. (2015). Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 12(1), 80-91. doi:10.1016/j.riai.2014.05.007

Lee, T.-Y., & Shim, J.-K. (2003). Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform. Mechanism and Machine Theory, 38(6), 563-577. doi:10.1016/s0094-114x(03)00009-0

St-Onge, B. M., & Gosselin, C. M. (2000). Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 19(3), 271-288. doi:10.1177/02783640022066860

Merlet, J.-P. (2004). Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis. The International Journal of Robotics Research, 23(3), 221-235. doi:10.1177/0278364904039806

Moreno, H. A., Saltaren, R., Carrera, I., Puglisi, L., & Aracil, R. (2012). Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 111-122. doi:10.1016/j.riai.2012.02.005

Mu, Z., & Kazerounian, K. (2002). A Real Parameter Continuation Method for Complete Solution of Forward Position Analysis of the General Stewart. Journal of Mechanical Design, 124(2), 236-244. doi:10.1115/1.1446476

Parikh, P. J., & Lam, S. S. Y. (2005). A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Transactions on Robotics, 21(1), 18-25. doi:10.1109/tro.2004.833801

Plitea, N., Lese, D., Pisla, D., & Vaida, C. (2013). Structural design and kinematics of a new parallel reconfigurable robot. Robotics and Computer-Integrated Manufacturing, 29(1), 219-235. doi:10.1016/j.rcim.2012.06.001

Raghavan, M. (1993). The Stewart Platform of General Geometry Has 40 Configurations. Journal of Mechanical Design, 115(2), 277-282. doi:10.1115/1.2919188

Martı´nez, J. M. R., & Duffy, J. (1998). Forward and Inverse Acceleration Analyses of In-Parallel Manipulators. Journal of Mechanical Design, 122(3), 299-303. doi:10.1115/1.1288360

Rolland, L. (2005). Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator. Advanced Robotics, 19(9), 995-1025. doi:10.1163/156855305774307004

Sen, S., Dasgupta, B., & Mallik, A. K. (2003). Variational approach for singularity-free path-planning of parallel manipulators. Mechanism and Machine Theory, 38(11), 1165-1183. doi:10.1016/s0094-114x(03)00065-x

Simaan, N., & Shoham, M. (2003). Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot. The International Journal of Robotics Research, 22(9), 757-775. doi:10.1177/02783649030229005

Sung-Gaun Kim, & Jeha Ryu. (2003). New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators. IEEE Transactions on Robotics and Automation, 19(4), 731-737. doi:10.1109/tra.2003.814496

Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface, In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 58-65. IEEE.

Yu, H., Li, B., Wang, Y., & Hu, Y. (2012). Conceptual design and workspace analysis of reconfigurable fixturing robots for sheet metal assembly. Assembly Automation, 32(3), 293-299. doi:10.1108/01445151211244465

Xi, F., Li, Y., & Wang, H. (2011). Module-based method for design and analysis of reconfigurable parallel robots. Frontiers of Mechanical Engineering, 6(2), 151-159. doi:10.1007/s11465-011-0121-6

Yang, G. (2001). Autonomous Robots, 10(1), 83-89. doi:10.1023/a:1026500704076

Ye, W., Fang, Y., Zhang, K., & Guo, S. (2014). A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mechanism and Machine Theory, 74, 1-9. doi:10.1016/j.mechmachtheory.2013.11.011

Yurt, S. N., Anli, E., & Ozkol, I. (2007). Forward kinematics analysis of the 6-3 SPM by using neural networks. Meccanica, 42(2), 187-196. doi:10.1007/s11012-006-9037-3

Zhang, D., Shi, Q., 2012. Novel Design and Analysis of a Reconfigurable Parallel Manipulator Using Variable Geometry Approach. In Practical Applications of Intelligent Systems, edited by Yingling Wang and Tianrui Li, 124, 447-457. Advances in Intelligent and Soft Computing. Shanghai, China: Springer International Publishing.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record