Mostrar el registro sencillo del ítem
dc.contributor.author | Giner-Sanz, Juan José | es_ES |
dc.contributor.author | Ortega Navarro, Emma María | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.date.accessioned | 2020-05-19T03:02:33Z | |
dc.date.available | 2020-05-19T03:02:33Z | |
dc.date.issued | 2019-04-12 | es_ES |
dc.identifier.issn | 0013-4651 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143620 | |
dc.description.abstract | [EN] Cyclic voltammetry is one of today's standard electrochemical measurement techniques. What characterizes cyclic voltammetry is that potential is linearly ramped in cycles. In general, in this kind of measurements, the system tends to a stationary state, which is known as limit cycle. The common practice for assessing the voltammogram convergence is to perform a multicycle cyclic voltammetry, and visually compare the sequential cycles in order to see if there are significant changes from one cycle to the following one. The main limitation of visual comparison is its limited accuracy and its dependence on the analyst's subjectivity. In this work, an algorithm for quantitatively assessing the convergence of experimental cyclic voltammograms (CVs) was developed. The algorithm was successfully validated experimentally using two systems: it is able to determine whether the CV converged to its limit cycle, and when it converged. Moreover, the algorithm is able to quantify the measurement noise. The low computational cost of the developed algorithm allows to execute it in real time during the cyclic voltammetry measurement. In this way, it can be used in order to automate the measurement process which would decide, according to predefined convergence criteria, when to stop cycling. | es_ES |
dc.description.sponsorship | The authors are very grateful to the Generalitat Valenciana (Vali+d postdoctoral grant APOSTD/2018/001), to the Ministerio de Economia y Competitividad (Project CTQ2015-65202-C2-1-R), to the European Regional Development Fund (FEDER) and to the European Social Fund, for their economic support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Electrochemical Society | es_ES |
dc.relation.ispartof | Journal of The Electrochemical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrodes | es_ES |
dc.subject | Carbon | es_ES |
dc.subject | Nanocomposite | es_ES |
dc.subject | Parameters | es_ES |
dc.subject | Battery | es_ES |
dc.subject | Cathode | es_ES |
dc.subject | Sensor | es_ES |
dc.subject | Alloy | es_ES |
dc.subject | SNO2 | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1149/2.1111906jes | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Giner-Sanz, JJ.; Ortega Navarro, EM.; García Gabaldón, M.; Pérez-Herranz, V. (2019). Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle. Journal of The Electrochemical Society. 166(6):H224-H232. https://doi.org/10.1149/2.1111906jes | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1149/2.1111906jes | es_ES |
dc.description.upvformatpinicio | H224 | es_ES |
dc.description.upvformatpfin | H232 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 166 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\385481 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Zoski C. G. , Handbook of electrochemistry, Elsevier, Paris (2007). | es_ES |
dc.description.references | Skoog D. A. West D. M. Holler F. J. Crouch S. , Fundamentals of analytical chemistry, Brook & Cole, New York (2013). | es_ES |
dc.description.references | Sides, W., Kassouf, N., & Huang, Q. (2019). Electrodeposition of Ferromagnetic FeCo and FeCoMn Alloy from Choline Chloride Based Deep Eutectic Solvent. Journal of The Electrochemical Society, 166(4), D77-D85. doi:10.1149/2.0181904jes | es_ES |
dc.description.references | Zhang, S. S., Chen, J., & Wang, C. (2019). Elemental Sulfur as a Cathode Additive for Enhanced Rate Capability of Layered Lithium Transition Metal Oxides. Journal of The Electrochemical Society, 166(4), A487-A492. doi:10.1149/2.0101904jes | es_ES |
dc.description.references | Meng, Z., Huang, Y., Li, J., Yang, R., Wang, X., Guo, Y., … Wang, L. (2019). Deposition of Cross-Linked Dopamine and Polyethylenimine on Polypropylene Separators via One-Step Soaking Method for Li-S Batteries. Journal of The Electrochemical Society, 166(4), A546-A550. doi:10.1149/2.0351904jes | es_ES |
dc.description.references | Watanabe, S., Mori, D., Taminato, S., Matsuda, Y., Yamamoto, O., Takeda, Y., & Imanishi, N. (2019). Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte. Journal of The Electrochemical Society, 166(4), A539-A545. doi:10.1149/2.0331904jes | es_ES |
dc.description.references | Zhou, X., Pu, T., Yang, G., Ma, W., Yang, B., & Dai, Y. (2019). Origin and Effect of Oxygen Defect in Li4Ti5O12 Prepared with Carbon Source. Journal of The Electrochemical Society, 166(4), A448-A454. doi:10.1149/2.0011904jes | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 | es_ES |
dc.description.references | Naresh, V., & Martha, S. K. (2019). Carbon Coated SnO2 as a Negative Electrode Additive for High Performance Lead Acid Batteries and Supercapacitors. Journal of The Electrochemical Society, 166(4), A551-A558. doi:10.1149/2.0291904jes | es_ES |
dc.description.references | Fan, T., Sun, P., Zhao, J., Cui, Z., & Cui, G. (2019). Facile Synthesis of Three-Dimensional Ordered Porous Amorphous Ni-P for High-Performance Asymmetric Supercapacitors. Journal of The Electrochemical Society, 166(2), D37-D43. doi:10.1149/2.0521902jes | es_ES |
dc.description.references | Xu, L., Wang, Y., Xu, Q., & Duan, H. (2019). Comparison of the Properties of Low-Dimensional Nano-Ti/SnO2-Sb-Fe Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 166(4), E69-E76. doi:10.1149/2.0051904jes | es_ES |
dc.description.references | Sánchez‐Rivera, M., Giner‐Sanz, J. J., Pérez‐Herranz, V., & Mestre, S. (2018). CuO improved (Sn,Sb)O2ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology, 16(3), 1274-1285. doi:10.1111/ijac.13149 | es_ES |
dc.description.references | Giner‐Sanz, J. J., Sánchez‐Rivera, M. J., García‐Gabaldón, M., Ortega, E. M., Mestre, S., & Pérez‐Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. doi:10.1002/celc.201801766 | es_ES |
dc.description.references | Dong, S., Cui, H., Zhang, D., & Tong, M. (2019). C-reactive Protein and Glucose Electrochemical Sensors Based on Zr(IV) Organic Framework with 2,5-thiophenedicarboxylate Anion. Journal of The Electrochemical Society, 166(4), B193-B199. doi:10.1149/2.0171904jes | es_ES |
dc.description.references | Wu, J., Zhu, Y., Yan, K., & Zhang, J. (2019). Photovoltammetry of p-Phenylenediamine Mediated by Hexacyanoferrate Immobilized on CdS-Graphene Nanocomposites. Journal of The Electrochemical Society, 166(4), H87-H93. doi:10.1149/2.0041904jes | es_ES |
dc.description.references | Atta, N. F., Galal, A., El-Ads, E. H., & Galal, A. E. (2019). New Insight in Fabrication of a Sensitive Nano-Magnetite/Glutamine/Carbon Based Electrochemical Sensor for Determination of Aspirin and Omeprazole. Journal of The Electrochemical Society, 166(2), B161-B172. doi:10.1149/2.1241902jes | es_ES |
dc.description.references | Ma, K., Sinha, A., Dang, X., & Zhao, H. (2019). Electrochemical Preparation of Gold Nanoparticles-Polypyrrole Co-Decorated 2D MoS2 Nanocomposite Sensor for Sensitive Detection of Glucose. Journal of The Electrochemical Society, 166(2), B147-B154. doi:10.1149/2.1231902jes | es_ES |
dc.description.references | Osti, N. C., Dyatkin, B., Gallegos, A., Voneshen, D., Keum, J. K., Littrell, K., … Mamontov, E. (2019). Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. Journal of The Electrochemical Society, 166(4), A507-A514. doi:10.1149/2.0131904jes | es_ES |
dc.description.references | Loguercio, L. F., de Matos, C. F., de Oliveira, M. C., Marin, G., Khan, S., Dupont, J., … Santos, M. J. L. (2019). Polypyrrole/Ionic Liquid/Au Nanoparticle Counter-Electrodes for Dye-Sensitized Solar Cells: Improving Charge-Transfer Resistance at the CE/Electrolyte Interface. Journal of The Electrochemical Society, 166(5), H3188-H3194. doi:10.1149/2.0271905jes | es_ES |
dc.description.references | Thomas, S., Kowalski, D., Molinari, M., & Mallet, J. (2018). Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta, 265, 166-174. doi:10.1016/j.electacta.2018.01.139 | es_ES |
dc.description.references | Zhang, Q., Liu, X., Yin, L., Chen, P., Wang, Y., & Yan, T. (2018). Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 270, 352-362. doi:10.1016/j.electacta.2018.03.059 | es_ES |
dc.description.references | Viada, B. N., Juárez, A. V., Pachón Gómez, E. M., Fernández, M. A., & Yudi, L. M. (2018). Determination of the critical micellar concentration of perfluorinated surfactants by cyclic voltammetry at liquid/liquid interfaces. Electrochimica Acta, 263, 499-507. doi:10.1016/j.electacta.2017.11.053 | es_ES |
dc.description.references | Vijayakumar, E., Yun, Y.-H., Quy, V. H. V., Lee, Y.-H., Kang, S.-H., Ahn, K.-S., & Lee, S. W. (2019). Development of Tungsten Trioxide Using Pulse and Continuous Electrodeposition and Its Properties in Electrochromic Devices. Journal of The Electrochemical Society, 166(4), D86-D92. doi:10.1149/2.0271904jes | es_ES |
dc.description.references | Kosswattaarachchi, A. M., VanGelder, L. E., Nachtigall, O., Hazelnis, J. P., Brennessel, W. W., Matson, E. M., & Cook, T. R. (2019). Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters. Journal of The Electrochemical Society, 166(4), A464-A472. doi:10.1149/2.1351902jes | es_ES |
dc.description.references | Tang, B., Zhou, J., Fang, G., Guo, S., Guo, X., Shan, L., … Liang, S. (2019). Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode. Journal of The Electrochemical Society, 166(4), A480-A486. doi:10.1149/2.0081904jes | es_ES |
dc.description.references | Li, Y., Zhang, Y., Ma, J., Yang, L., Li, X., Zhao, E., … Yang, C. (2019). Synthesis of LiFePO4 Nanocomposite with Surface Conductive Phase by Zr Doping with Li Excess for Fast Discharging. Journal of The Electrochemical Society, 166(2), A410-A415. doi:10.1149/2.1331902jes | es_ES |
dc.description.references | Li, M., Li, Y., & Wang, Z. (2019). Electrochemical Reduction of Zirconium Oxide and Co-Deposition of Al-Zr Alloy from Cryolite Molten Salt. Journal of The Electrochemical Society, 166(2), D65-D68. doi:10.1149/2.1291902jes | es_ES |
dc.description.references | Du, L., Wu, W., Luo, C., Xu, D., Guo, H., Wang, R., … Deng, Y. (2019). Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. Journal of The Electrochemical Society, 166(2), A423-A428. doi:10.1149/2.1361902jes | es_ES |
dc.description.references | Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 | es_ES |
dc.description.references | Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480b | es_ES |
dc.description.references | Daubinger, P., Kieninger, J., Unmüssig, T., & Urban, G. A. (2014). Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study. Phys. Chem. Chem. Phys., 16(18), 8392-8399. doi:10.1039/c4cp00342j | es_ES |