- -

Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle

Show simple item record

Files in this item

dc.contributor.author Giner-Sanz, Juan José es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2020-05-19T03:02:33Z
dc.date.available 2020-05-19T03:02:33Z
dc.date.issued 2019-04-12 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143620
dc.description.abstract [EN] Cyclic voltammetry is one of today's standard electrochemical measurement techniques. What characterizes cyclic voltammetry is that potential is linearly ramped in cycles. In general, in this kind of measurements, the system tends to a stationary state, which is known as limit cycle. The common practice for assessing the voltammogram convergence is to perform a multicycle cyclic voltammetry, and visually compare the sequential cycles in order to see if there are significant changes from one cycle to the following one. The main limitation of visual comparison is its limited accuracy and its dependence on the analyst's subjectivity. In this work, an algorithm for quantitatively assessing the convergence of experimental cyclic voltammograms (CVs) was developed. The algorithm was successfully validated experimentally using two systems: it is able to determine whether the CV converged to its limit cycle, and when it converged. Moreover, the algorithm is able to quantify the measurement noise. The low computational cost of the developed algorithm allows to execute it in real time during the cyclic voltammetry measurement. In this way, it can be used in order to automate the measurement process which would decide, according to predefined convergence criteria, when to stop cycling. es_ES
dc.description.sponsorship The authors are very grateful to the Generalitat Valenciana (Vali+d postdoctoral grant APOSTD/2018/001), to the Ministerio de Economia y Competitividad (Project CTQ2015-65202-C2-1-R), to the European Regional Development Fund (FEDER) and to the European Social Fund, for their economic support. es_ES
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrodes es_ES
dc.subject Carbon es_ES
dc.subject Nanocomposite es_ES
dc.subject Parameters es_ES
dc.subject Battery es_ES
dc.subject Cathode es_ES
dc.subject Sensor es_ES
dc.subject Alloy es_ES
dc.subject SNO2 es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.1111906jes es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Giner-Sanz, JJ.; Ortega Navarro, EM.; García Gabaldón, M.; Pérez-Herranz, V. (2019). Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle. Journal of The Electrochemical Society. 166(6):H224-H232. https://doi.org/10.1149/2.1111906jes es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1149/2.1111906jes es_ES
dc.description.upvformatpinicio H224 es_ES
dc.description.upvformatpfin H232 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 166 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\385481 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Zoski C. G. , Handbook of electrochemistry, Elsevier, Paris (2007). es_ES
dc.description.references Skoog D. A. West D. M. Holler F. J. Crouch S. , Fundamentals of analytical chemistry, Brook & Cole, New York (2013). es_ES
dc.description.references Sides, W., Kassouf, N., & Huang, Q. (2019). Electrodeposition of Ferromagnetic FeCo and FeCoMn Alloy from Choline Chloride Based Deep Eutectic Solvent. Journal of The Electrochemical Society, 166(4), D77-D85. doi:10.1149/2.0181904jes es_ES
dc.description.references Zhang, S. S., Chen, J., & Wang, C. (2019). Elemental Sulfur as a Cathode Additive for Enhanced Rate Capability of Layered Lithium Transition Metal Oxides. Journal of The Electrochemical Society, 166(4), A487-A492. doi:10.1149/2.0101904jes es_ES
dc.description.references Meng, Z., Huang, Y., Li, J., Yang, R., Wang, X., Guo, Y., … Wang, L. (2019). Deposition of Cross-Linked Dopamine and Polyethylenimine on Polypropylene Separators via One-Step Soaking Method for Li-S Batteries. Journal of The Electrochemical Society, 166(4), A546-A550. doi:10.1149/2.0351904jes es_ES
dc.description.references Watanabe, S., Mori, D., Taminato, S., Matsuda, Y., Yamamoto, O., Takeda, Y., & Imanishi, N. (2019). Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte. Journal of The Electrochemical Society, 166(4), A539-A545. doi:10.1149/2.0331904jes es_ES
dc.description.references Zhou, X., Pu, T., Yang, G., Ma, W., Yang, B., & Dai, Y. (2019). Origin and Effect of Oxygen Defect in Li4Ti5O12 Prepared with Carbon Source. Journal of The Electrochemical Society, 166(4), A448-A454. doi:10.1149/2.0011904jes es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 es_ES
dc.description.references Naresh, V., & Martha, S. K. (2019). Carbon Coated SnO2 as a Negative Electrode Additive for High Performance Lead Acid Batteries and Supercapacitors. Journal of The Electrochemical Society, 166(4), A551-A558. doi:10.1149/2.0291904jes es_ES
dc.description.references Fan, T., Sun, P., Zhao, J., Cui, Z., & Cui, G. (2019). Facile Synthesis of Three-Dimensional Ordered Porous Amorphous Ni-P for High-Performance Asymmetric Supercapacitors. Journal of The Electrochemical Society, 166(2), D37-D43. doi:10.1149/2.0521902jes es_ES
dc.description.references Xu, L., Wang, Y., Xu, Q., & Duan, H. (2019). Comparison of the Properties of Low-Dimensional Nano-Ti/SnO2-Sb-Fe Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 166(4), E69-E76. doi:10.1149/2.0051904jes es_ES
dc.description.references Sánchez‐Rivera, M., Giner‐Sanz, J. J., Pérez‐Herranz, V., & Mestre, S. (2018). CuO improved (Sn,Sb)O2ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology, 16(3), 1274-1285. doi:10.1111/ijac.13149 es_ES
dc.description.references Giner‐Sanz, J. J., Sánchez‐Rivera, M. J., García‐Gabaldón, M., Ortega, E. M., Mestre, S., & Pérez‐Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. doi:10.1002/celc.201801766 es_ES
dc.description.references Dong, S., Cui, H., Zhang, D., & Tong, M. (2019). C-reactive Protein and Glucose Electrochemical Sensors Based on Zr(IV) Organic Framework with 2,5-thiophenedicarboxylate Anion. Journal of The Electrochemical Society, 166(4), B193-B199. doi:10.1149/2.0171904jes es_ES
dc.description.references Wu, J., Zhu, Y., Yan, K., & Zhang, J. (2019). Photovoltammetry of p-Phenylenediamine Mediated by Hexacyanoferrate Immobilized on CdS-Graphene Nanocomposites. Journal of The Electrochemical Society, 166(4), H87-H93. doi:10.1149/2.0041904jes es_ES
dc.description.references Atta, N. F., Galal, A., El-Ads, E. H., & Galal, A. E. (2019). New Insight in Fabrication of a Sensitive Nano-Magnetite/Glutamine/Carbon Based Electrochemical Sensor for Determination of Aspirin and Omeprazole. Journal of The Electrochemical Society, 166(2), B161-B172. doi:10.1149/2.1241902jes es_ES
dc.description.references Ma, K., Sinha, A., Dang, X., & Zhao, H. (2019). Electrochemical Preparation of Gold Nanoparticles-Polypyrrole Co-Decorated 2D MoS2 Nanocomposite Sensor for Sensitive Detection of Glucose. Journal of The Electrochemical Society, 166(2), B147-B154. doi:10.1149/2.1231902jes es_ES
dc.description.references Osti, N. C., Dyatkin, B., Gallegos, A., Voneshen, D., Keum, J. K., Littrell, K., … Mamontov, E. (2019). Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. Journal of The Electrochemical Society, 166(4), A507-A514. doi:10.1149/2.0131904jes es_ES
dc.description.references Loguercio, L. F., de Matos, C. F., de Oliveira, M. C., Marin, G., Khan, S., Dupont, J., … Santos, M. J. L. (2019). Polypyrrole/Ionic Liquid/Au Nanoparticle Counter-Electrodes for Dye-Sensitized Solar Cells: Improving Charge-Transfer Resistance at the CE/Electrolyte Interface. Journal of The Electrochemical Society, 166(5), H3188-H3194. doi:10.1149/2.0271905jes es_ES
dc.description.references Thomas, S., Kowalski, D., Molinari, M., & Mallet, J. (2018). Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta, 265, 166-174. doi:10.1016/j.electacta.2018.01.139 es_ES
dc.description.references Zhang, Q., Liu, X., Yin, L., Chen, P., Wang, Y., & Yan, T. (2018). Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 270, 352-362. doi:10.1016/j.electacta.2018.03.059 es_ES
dc.description.references Viada, B. N., Juárez, A. V., Pachón Gómez, E. M., Fernández, M. A., & Yudi, L. M. (2018). Determination of the critical micellar concentration of perfluorinated surfactants by cyclic voltammetry at liquid/liquid interfaces. Electrochimica Acta, 263, 499-507. doi:10.1016/j.electacta.2017.11.053 es_ES
dc.description.references Vijayakumar, E., Yun, Y.-H., Quy, V. H. V., Lee, Y.-H., Kang, S.-H., Ahn, K.-S., & Lee, S. W. (2019). Development of Tungsten Trioxide Using Pulse and Continuous Electrodeposition and Its Properties in Electrochromic Devices. Journal of The Electrochemical Society, 166(4), D86-D92. doi:10.1149/2.0271904jes es_ES
dc.description.references Kosswattaarachchi, A. M., VanGelder, L. E., Nachtigall, O., Hazelnis, J. P., Brennessel, W. W., Matson, E. M., & Cook, T. R. (2019). Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters. Journal of The Electrochemical Society, 166(4), A464-A472. doi:10.1149/2.1351902jes es_ES
dc.description.references Tang, B., Zhou, J., Fang, G., Guo, S., Guo, X., Shan, L., … Liang, S. (2019). Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode. Journal of The Electrochemical Society, 166(4), A480-A486. doi:10.1149/2.0081904jes es_ES
dc.description.references Li, Y., Zhang, Y., Ma, J., Yang, L., Li, X., Zhao, E., … Yang, C. (2019). Synthesis of LiFePO4 Nanocomposite with Surface Conductive Phase by Zr Doping with Li Excess for Fast Discharging. Journal of The Electrochemical Society, 166(2), A410-A415. doi:10.1149/2.1331902jes es_ES
dc.description.references Li, M., Li, Y., & Wang, Z. (2019). Electrochemical Reduction of Zirconium Oxide and Co-Deposition of Al-Zr Alloy from Cryolite Molten Salt. Journal of The Electrochemical Society, 166(2), D65-D68. doi:10.1149/2.1291902jes es_ES
dc.description.references Du, L., Wu, W., Luo, C., Xu, D., Guo, H., Wang, R., … Deng, Y. (2019). Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. Journal of The Electrochemical Society, 166(2), A423-A428. doi:10.1149/2.1361902jes es_ES
dc.description.references Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 es_ES
dc.description.references Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480b es_ES
dc.description.references Daubinger, P., Kieninger, J., Unmüssig, T., & Urban, G. A. (2014). Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study. Phys. Chem. Chem. Phys., 16(18), 8392-8399. doi:10.1039/c4cp00342j es_ES


This item appears in the following Collection(s)

Show simple item record