- -

Robots Móviles con Orugas Historia, Modelado, Localización y Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robots Móviles con Orugas Historia, Modelado, Localización y Control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González, Ramón es_ES
dc.contributor.author Rodríguez, Francisco es_ES
dc.contributor.author Guzmán, José Luis es_ES
dc.date.accessioned 2020-05-20T09:21:39Z
dc.date.available 2020-05-20T09:21:39Z
dc.date.issued 2015-01-11
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143838
dc.description.abstract [ES] Uno de los campos de aplicación más significativos de la robótica móvil consiste en robots capaces de operar en condiciones exteriores sobre terrenos no preparados (robots planetarios, robots en agricultura, robot en operaciones de búsqueda y rescate, robots militares, etc.). Sin embargo, conseguir que los robots se muevan de forma eficiente y precisa en este tipo de entornos no es una tarea sencilla. Un primer aspecto crítico es el sistema de locomoción. En este caso, las orugas constituyen una alternativa sólida a otro tipo de sistemas y desde principios del siglo XX han demostrado sus bondades en vehículos tripulados. En este artículo se motiva y se demuestra mediante pruebas reales la idoneidad de este tipo de locomoción para robots móviles en terrenos no preparados. Es importante remarcar que este artículo pretende ser un resumen extendido del libro recientemente publicado por los autores “Autonomous Tracked Robots in Planar Off-Road Conditions” (González et al., 2014), y, por lo tanto, no pretende ser una contribución original. Inicialmente se presenta una perspectiva histórica de los vehículos y los robots con orugas. Posteriormente se discuten los aspectos de modelado con especial mención al fenomeno del deslizamiento. A continuación, se analizan varias estrategias de localización, en particular, la odometria visual. También se analiza el aspecto del control de navegación, para ello se analizan varias estrategias con compensación del deslizamiento. Finalmente se expresan las conclusiones del trabajo en base a la experiencia de los autores en este campo. es_ES
dc.description.abstract [EN] One of the most significant research field in mobile robotics deals with robots operating in off-road conditions (planetary rovers, agriculture robots, search and rescue operations, military robots, etc.). However, obtaining a successful result is not an easy task. One primary point is the locomotion system. In this case, tracks constitute a well-known approach and since the beginning of the 20th century this locomotion system has demonstrated remarkable results in manned vehicles. This article motivates and shows through physical experiments the goodness of tracked mobile robots in off-road conditions. Firstly, a historical perspective of tracked vehicles and tracked robots is addressed. Then, the main modelling aspects are introduced, in particular, the slip phenomenon. After that, several localization techniques are discussed with especial mention to visual odometry. The motion control aspect is also of primal importance. In this regard, several slip-compensation control strategies are analysed. Finally, the authors background obtained in this field is expounded. es_ES
dc.description.sponsorship Este trabajo ha sido realizado en el marco del proyecto Controlcrop PIO-TEP-6174, financiado por la Consejería de Economía, Innovación y Ciencia de la Junta de Andalucía (España). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Slip es_ES
dc.subject Visual Odometry es_ES
dc.subject Adaptive Control es_ES
dc.subject Predictive Control es_ES
dc.subject Deslizamiento es_ES
dc.subject Odometria Visual es_ES
dc.subject Control Adaptativo es_ES
dc.subject Control Predictivo es_ES
dc.title Robots Móviles con Orugas Historia, Modelado, Localización y Control es_ES
dc.title.alternative Autonomous Tracked Robots. History, Modelling, Localization, and Motion Control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2014.11.001
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//PIO-TEP-6174/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation González, R.; Rodríguez, F.; Guzmán, JL. (2015). Robots Móviles con Orugas Historia, Modelado, Localización y Control. Revista Iberoamericana de Automática e Informática industrial. 12(1):3-12. https://doi.org/10.1016/j.riai.2014.11.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2014.11.001 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9404 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.description.references Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning and prediction of slip from visual information. Journal of Field Robotics, 24(3), 205-231. doi:10.1002/rob.20179 es_ES
dc.description.references Benoit, O., Gotteland, P., & Quibel, A. (2003). Prediction of trafficability for tracked vehicle on broken soil: real size tests. Journal of Terramechanics, 40(2), 135-160. doi:10.1016/j.jterra.2003.10.003 es_ES
dc.description.references Borenstein, J., May 1994. The CLAPPER: A Dual–drive Mobile Robot with Internal Correction of Dead–reckoning Errors. IEEE Conference on Robotics and Automation, IEEE, pp. 3085-3090, San Diego, USA. es_ES
dc.description.references Cariou, C., Lenain, R., Thuilot, B., & Berducat, M. (2009). Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. Journal of Field Robotics, 26(6-7), 504-518. doi:10.1002/rob.20282 es_ES
dc.description.references Crolla, D. A., & Schwanghart, H. (1992). Vehicle dynamics—Steering I. Journal of Terramechanics, 29(1), 7-17. doi:10.1016/0022-4898(92)90011-8 es_ES
dc.description.references Endo, D., Okada, Y., Nagatani, K., Yoshida, K., October 2007. Path Following Control for Tracked Vehicles Based on Slip–Compensating Odometry. IEEE International Conference on Intelligent Robots and Systems, IEEE, pp. 2871-2876, san Diego, USA. es_ES
dc.description.references Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J. L., & Rodriguez, F. (2010). Adaptive Control for a Mobile Robot Under Slip Conditions Using an LMI-Based Approach. European Journal of Control, 16(2), 144-155. doi:10.3166/ejc.16.144-155 es_ES
dc.description.references González, R., Rodríguez, F., Guzmán, J.L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer, Germany. es_ES
dc.description.references Gonzalez, R., Rodriguez, F., Guzman, J. L., Pradalier, C., & Siegwart, R. (2011). Combined visual odometry and visual compass for off-road mobile robots localization. Robotica, 30(6), 865-878. doi:10.1017/s026357471100110x es_ES
dc.description.references Gracia, L., & Tornero, J. (2007). Kinematic modeling of wheeled mobile robots with slip. Advanced Robotics, 21(11), 1253-1279. doi:10.1163/156855307781503763 es_ES
dc.description.references Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain Adaptive Navigation for planetary rovers. Journal of Field Robotics, 26(4), 391-410. doi:10.1002/rob.20292 es_ES
dc.description.references Helmick, D. M., Roumeliotis, S. I., Cheng, Y., Clouse, D. S., Bajracharya, M., & Matthies, L. H. (2006). Slip-compensated path following for planetary exploration rovers. Advanced Robotics, 20(11), 1257-1280. doi:10.1163/156855306778792470 es_ES
dc.description.references Hohl, G. H. (2007). Military terrain vehicles. Journal of Terramechanics, 44(1), 23-34. doi:10.1016/j.jterra.2006.01.003 es_ES
dc.description.references Iagnemma, K., Dubowsky, S., September 2000. Mobile Robot Rough–Terrain Control (RTC) for Planetary Exploration. ASME Biennial Mechanisms and Robotics Conference, ASME, pp. 10-13, Baltimore, USA. es_ES
dc.description.references Iagnemma, K., Dubowsky, S., 2004. Mobile Robots in Rough Terrain. Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer Tracts in Advanced Robotics. Springer, Germany. es_ES
dc.description.references Iagnemma, K., Kang, S., Shibly, H., & Dubowsky, S. (2004). Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers. IEEE Transactions on Robotics, 20(5), 921-927. doi:10.1109/tro.2004.829462 es_ES
dc.description.references Iagnemma, K., & Ward, C. C. (2008). Classification-based wheel slip detection and detector fusion for mobile robots on outdoor terrain. Autonomous Robots, 26(1), 33-46. doi:10.1007/s10514-008-9105-8 es_ES
dc.description.references Ishigami, G., Nagatani, K., & Yoshida, K. (2009). Slope traversal controls for planetary exploration rover on sandy terrain. Journal of Field Robotics, 26(3), 264-286. doi:10.1002/rob.20277 es_ES
dc.description.references Johnson, A.E., Goldberg, S.B., Yang, C., Matthies, L.H., May 2008. Robust and Efficient Stereo Feature Tracking for Visual Odometry. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 39-46, Pasadena, USA. es_ES
dc.description.references Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A Stable Tracking Control Method for an Autonomous Mobile Robots. IEEE International Conference on Robotics and Automation, IEEE, pp. 384-389, Cincinnati, USA. es_ES
dc.description.references Korlath, G. (2007). Mobility analysis of off-road vehicles: Benefits for development, procurement and operation. Journal of Terramechanics, 44(5), 383-393. doi:10.1016/j.jterra.2007.10.007 es_ES
dc.description.references Krebs, A., Thueer, T., Carrasco, E., Siegwart, R., February 2008. Towards Torque Control of the CRAB Rover. International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, USA. es_ES
dc.description.references Labrosse, F. (2006). The visual compass: Performance and limitations of an appearance-based method. Journal of Field Robotics, 23(10), 913-941. doi:10.1002/rob.20159 es_ES
dc.description.references Le, A., 1999. Modelling and Control of Tracked Vehicles. PhD Thesis, University of Sydney, Sydney, Australia in press. es_ES
dc.description.references Lenain, R., Thuilot, B., Cariou, C., & Martinet, P. (2007). Adaptive and Predictive Path Tracking Control for Off-road Mobile Robots. European Journal of Control, 13(4), 419-439. doi:10.3166/ejc.13.419-439 es_ES
dc.description.references Leung, T., & Malik, J. (2001). International Journal of Computer Vision, 43(1), 29-44. doi:10.1023/a:1011126920638 es_ES
dc.description.references Liu, Y., Liu, G., 2009. Mobile Manipulation using Tracks of a Tracked Mobile Robot. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, pp. 948-953. es_ES
dc.description.references Chang Boon Low, & Danwei Wang. (2008). GPS-Based Path Following Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping. IEEE Transactions on Control Systems Technology, 16(2), 340-347. doi:10.1109/tcst.2007.903100 es_ES
dc.description.references Martínez, J. L., Mandow, A., Morales, J., Pedraza, S., & García-Cerezo, A. (2005). Approximating Kinematics for Tracked Mobile Robots. The International Journal of Robotics Research, 24(10), 867-878. doi:10.1177/0278364905058239 es_ES
dc.description.references Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., … Angelova, A. (2007). Computer Vision on Mars. International Journal of Computer Vision, 75(1), 67-92. doi:10.1007/s11263-007-0046-z es_ES
dc.description.references Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789-814. doi:10.1016/s0005-1098(99)00214-9 es_ES
dc.description.references McNae, A., 2000. A History of Komatsu: Construction and Mining Equipment. Beenleigh, Qld. es_ES
dc.description.references Montiel, J., Davison, A., May 2006. A Visual Compass based on SLAM. IEEE International Conference on Robotics and Automation, IEEE, pp. 1917-1922, Orlando, USA. es_ES
dc.description.references Morales, J., Martinez, J. L., Mandow, A., Garcia-Cerezo, A. J., & Pedraza, S. (2009). Power Consumption Modeling of Skid-Steer Tracked Mobile Robots on Rigid Terrain. IEEE Transactions on Robotics, 25(5), 1098-1108. doi:10.1109/tro.2009.2026499 es_ES
dc.description.references Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Helmick, D. M., & Matthies, L. (2007). Autonomous Stair Climbing for Tracked Vehicles. The International Journal of Robotics Research, 26(7), 737-758. doi:10.1177/0278364907080423 es_ES
dc.description.references Nourani-Vatani, N., Roberts, J., Srinivasan, M., May 2009. Practical Visual Odometry for Car–like Vehicles. IEEE International Conference on Robotics and Automation, IEEE, pp. 3551-3557, Kobe, Japan. es_ES
dc.description.references Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835-852. doi:10.1109/tcst.2002.804116 es_ES
dc.description.references Ray, L. E. (2009). Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles. IEEE Transactions on Robotics, 25(3), 717-726. doi:10.1109/tro.2009.2018971 es_ES
dc.description.references Rubinstein, D., & Coppock, J. L. (2007). A detailed single-link track model for multi-body dynamic simulation of crawlers. Journal of Terramechanics, 44(5), 355-364. doi:10.1016/j.jterra.2007.10.004 es_ES
dc.description.references Sánchez-Hermosilla, J., Rodríguez, F., González, R., Guzmán, J., Berenguel, M., 2010. A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, pp. 583-608. es_ES
dc.description.references Shoval, S., 2004. Stability of a Multi Tracked Robot Traveling over Steep Slopes. In: IEEE Int. Conf. on Robotics and Automation (ICRA). Vol. 5. IEEE, pp. 4701-4706. es_ES
dc.description.references Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA. es_ES
dc.description.references Wan, J., Vehi, J., & Luo, N. (2008). A numerical approach to design control invariant sets for constrained nonlinear discrete-time systems with guaranteed optimality. Journal of Global Optimization, 44(3), 395-407. doi:10.1007/s10898-008-9334-6 es_ES
dc.description.references Danwei Wang, & Chang Boon Low. (2008). Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective. IEEE Transactions on Robotics, 24(3), 676-687. doi:10.1109/tro.2008.921563 es_ES
dc.description.references Wong, J. Y. (1984). An introduction to terramechanics. Journal of Terramechanics, 21(1), 5-17. doi:10.1016/0022-4898(84)90004-1 es_ES
dc.description.references Wong, J. Y., & Huang, W. (2006). «Wheels vs. tracks» – A fundamental evaluation from the traction perspective. Journal of Terramechanics, 43(1), 27-42. doi:10.1016/j.jterra.2004.08.003 es_ES
dc.description.references Yi, J., Song, D., Zhang, J., Goodwin, Z., April 2007. Adaptive Trajectory Tracking Control of Skid–Steered Mobile Robots. International Conference on Robotics and Automation, IEEE, pp. 2605-2610, Rome, Italy. es_ES
dc.description.references Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Jayasuriya, S., & Jingtai Liu. (2009). Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Transactions on Robotics, 25(5), 1087-1097. doi:10.1109/tro.2009.2026506 es_ES
dc.description.references Luo, Z., Shang, J., & Zhang, Z. (2013). A reconfigurable tracked mobile robot based on four-linkage mechanism. Journal of Central South University, 20(1), 62-70. doi:10.1007/s11771-013-1460-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem