Mostrar el registro sencillo del ítem
dc.contributor.author | Alvear-Alvear, Óscar | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Zema, Nicola | es_ES |
dc.contributor.author | Natalizio, Enrico | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.contributor.author | Cano, Juan-Carlos | es_ES |
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.date.accessioned | 2020-05-22T03:02:10Z | |
dc.date.available | 2020-05-22T03:02:10Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1383-469X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144077 | |
dc.description.abstract | [EN] Recently, Unmanned Aerial Vehicles (UAVs) have become a cheap alternative to sense pollution values in a certain area due to their flexibility and ability to carry small sensing units. In a previous work, we proposed a solution, called Pollution-driven UAV Control (PdUC), to allow UAVs to autonomously trace pollutant sources, and monitor air quality in the surrounding area. However, despite operational, we found that the proposed solution consumed excessive time, especially when considering the battery lifetime of current multi-rotor UAVs. In this paper, we have improved our previously proposed solution by adopting a space discretization technique. Discretization is one of the most efficient mathematical approaches to optimize a system by transforming a continuous domain into its discrete counterpart. The improvement proposed in this paper, called PdUC-Discretized (PdUC-D), consists of an optimization whereby UAVs only move between the central tile positions of a discretized space, avoiding monitoring locations separated by small distances, and whose actual differences in terms of air quality are barely noticeable. We also analyze the impact of varying the tile size on the overall process, showing that smaller tile sizes offer high accuracy at the cost of an increased flight time. Taking into account the obtained results, we consider that a tile size of 100 x 100 meters offers an adequate trade-off between flight time and monitoring accuracy. Experimental results show that PdUC-D drastically reduces the convergence time compared to the original PdUC proposal without loss of accuracy, and it also increases the performance gap with standard mobility patterns such as Spiral and Billiard. | es_ES |
dc.description.sponsorship | This work was partially supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R", the framework of the DIVINA Challenge Team, which is funded under the Labex MS2T program. Labex MS2T is supported by the French Government, through the program "Investments for the future" managed by the National Agency for Research (Reference: ANR-11-IDEX-0004-02), the "Programa de becas SENESCYT de la Republica del Ecuador", and the Research Direction of the University of Cuenca. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mobile Networks and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | UAV control system | es_ES |
dc.subject | Air pollution monitoring | es_ES |
dc.subject | Discretized systems | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s11036-018-1065-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0004/FR/Sorbonne Universités à Paris pour l'Enseignement et la Recherche/SUPER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Alvear-Alvear, Ó.; Tavares De Araujo Cesariny Calafate, CM.; Zema, N.; Natalizio, E.; Hernández-Orallo, E.; Cano, J.; Manzoni, P. (2018). A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing. Mobile Networks and Applications. 23(6):1693-1702. https://doi.org/10.1007/s11036-018-1065-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 3rd EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS 2017) | es_ES |
dc.relation.conferencedate | Noviembre 29-30,2017 | es_ES |
dc.relation.conferenceplace | Pisa, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11036-018-1065-4 | es_ES |
dc.description.upvformatpinicio | 1693 | es_ES |
dc.description.upvformatpfin | 1702 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\363058 | es_ES |
dc.contributor.funder | Universidad de Cuenca, Ecuador | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador | es_ES |
dc.description.references | Adam-poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian Maximum entropy–LUR approaches. Environ Health Perspect 970(2013):1–19. https://doi.org/10.1289/ehp.1306566 | es_ES |
dc.description.references | Agency U.S.E.P. (2015) Air Quality Index Available: http://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi | es_ES |
dc.description.references | Alvear O, Calafate CT, Hernández-Orallo E, Cano JC, Manzoni P (2015) Mobile Pollution Data Sensing Using UAVs The 13th International Conference on Advances in Mobile Computing and Multimedia | es_ES |
dc.description.references | Alvear O, Zamora W, Calafate C, Cano JC, Manzoni P (2016) An architecture offering mobile pollution sensing with high spatial resolution. J Sens:2016 | es_ES |
dc.description.references | Alvear O, Zema NR, Natalizio E, Calafate CT (2017) Using uav-based systems to monitor air pollution in areas with poor accessibility. J Adv Transp:2017 | es_ES |
dc.description.references | Alvear OA, Zema NR, Natalizio E, Calafate CT (2017) A chemotactic pollution-homing uav guidance system. In: 2017 13th international Wireless communications and mobile computing conference (IWCMC). IEEE, pp 2115–2120 | es_ES |
dc.description.references | André M (2004) The artemis european driving cycles for measuring car pollutant emissions. Sci Total Environ 334:73–84 | es_ES |
dc.description.references | Basu P, Redi J, Shurbanov V (2004) Coordinated flocking of uavs for improved connectivity of mobile ground nodes. In: 2004 IEEE Military communications conference, MILCOM, vol 3. IEEE, pp 1628–1634 | es_ES |
dc.description.references | Biomo JDMM, Kunz T, St-Hilaire M (2014) An enhanced gauss-markov mobility model for simulations of unmanned aerial ad hoc networks. In: 2014 7th IFIP Wireless and mobile networking conference (WMNC). IEEE, pp 1–8 | es_ES |
dc.description.references | Bouachir O, Abrassart A, Garcia F, Larrieu N (2014) A mobility model for uav ad hoc network. In: 2014 international conference on Unmanned aircraft systems (ICUAS). IEEE, pp 383–388 | es_ES |
dc.description.references | Cox TH, Nagy CJ, Skoog MA, Somers IA, Warner R Civil uav capability assessment | es_ES |
dc.description.references | Eisenman SB, Miluzzo E, Lane ND, Peterson RA, Ahn GS, Campbell AT (2009) Bikenet: a mobile sensing system for cyclist experience mapping. ACM Transactions on Sensor Networks (TOSN) 6(1):6 | es_ES |
dc.description.references | Erman AT, van Hoesel L, Havinga P, Wu J (2008) Enabling mobility in heterogeneous wireless sensor networks cooperating with uavs for mission-critical management. IEEE Wirel Commun 15(6):38–46 | es_ES |
dc.description.references | Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning | es_ES |
dc.description.references | Hugenholtz CH, Moorman BJ, Riddell K, Whitehead K (2012) Small unmanned aircraft systems for remote sensing and earth science research. Eos, Trans Amer Geophysical Union 93(25):236–236 | es_ES |
dc.description.references | Illingworth S, Allen G, Percival C, Hollingsworth P, Gallagher M, Ricketts H, Hayes H, adosz H, Crawley PD, Roberts G (2014) Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmos Sci Lett 15(4):252–258 | es_ES |
dc.description.references | Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766 | es_ES |
dc.description.references | Khan A, Schaefer D, Tao L, Miller DJ, Sun K, Zondlo MA, Harrison WA, Roscoe B, Lary DJ (2012) Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sens 4(5):1355–1368 | es_ES |
dc.description.references | Kuiper E, Nadjm-Tehrani S (2006) Mobility models for uav group reconnaissance applications. In: 2006 International conference on wireless and mobile communications (ICWMC’06). IEEE, pp 33–33 | es_ES |
dc.description.references | McFrederick Q, Kathilankal J, Fuentes J (2008) Air pollution modifies floral scent trails. Atmos Environ 42(10):2336–2348 | es_ES |
dc.description.references | MQ131 Ozone Sensor (2017) Datasheet: http://www.sensorsportal.com/downloads/mq131.pdf | es_ES |
dc.description.references | Orfanus D, de Freitas EP (2014) Comparison of uav-based reconnaissance systems performance using realistic mobility models. In: 2014 6Th international congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE, pp 248–253 | es_ES |
dc.description.references | Pajares G (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogram Eng Remote Sens 81(4):281–329 | es_ES |
dc.description.references | Pujadas M, Plaza J, Teres Jx, Artıñano B, Millan M (2000) Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the madrid urban plume, a case of study. Atmos Environ 34(19):3041–3056 | es_ES |
dc.description.references | R Core Team: R (2016) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ | es_ES |
dc.description.references | Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. The lancet 345(8943):176–178 | es_ES |
dc.description.references | Stein ML (1999) Statistical interpolation of spatial data: some theory for kriging. Springer, New York | es_ES |
dc.description.references | Teh SK, Mejias L, Corke P, Hu W (2008) Experiments in integrating autonomous uninhabited aerial vehicles(uavs) and wireless sensor networks. In: 2008 Australasian Conference on Robotics and Automation (ACRA 08). The Australian Robotics and Automation Association Inc., Canberra. https://eprints.qut.edu.au/15536/ | es_ES |
dc.description.references | Wan Y, Namuduri K, Zhou Y, Fu S (2013) A smooth-turn mobility model for airborne networks. IEEE Trans Veh Technol 62(7):3359–3370 | es_ES |
dc.description.references | Wang W, Guan X, Wang B, Wang Y (2010) A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf Sci 180(3):399–413 | es_ES |
dc.description.references | Zhou B, Xu K, Gerla M (2004) Group and swarm mobility models for ad hoc network scenarios using virtual tracks. In: 2004 IEEE Military communications conference, MILCOM 2004, vol 1. IEEE, pp 289–294 | es_ES |