- -

A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvear-Alvear, Óscar es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Zema, Nicola es_ES
dc.contributor.author Natalizio, Enrico es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2020-05-22T03:02:10Z
dc.date.available 2020-05-22T03:02:10Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1383-469X es_ES
dc.identifier.uri http://hdl.handle.net/10251/144077
dc.description.abstract [EN] Recently, Unmanned Aerial Vehicles (UAVs) have become a cheap alternative to sense pollution values in a certain area due to their flexibility and ability to carry small sensing units. In a previous work, we proposed a solution, called Pollution-driven UAV Control (PdUC), to allow UAVs to autonomously trace pollutant sources, and monitor air quality in the surrounding area. However, despite operational, we found that the proposed solution consumed excessive time, especially when considering the battery lifetime of current multi-rotor UAVs. In this paper, we have improved our previously proposed solution by adopting a space discretization technique. Discretization is one of the most efficient mathematical approaches to optimize a system by transforming a continuous domain into its discrete counterpart. The improvement proposed in this paper, called PdUC-Discretized (PdUC-D), consists of an optimization whereby UAVs only move between the central tile positions of a discretized space, avoiding monitoring locations separated by small distances, and whose actual differences in terms of air quality are barely noticeable. We also analyze the impact of varying the tile size on the overall process, showing that smaller tile sizes offer high accuracy at the cost of an increased flight time. Taking into account the obtained results, we consider that a tile size of 100 x 100 meters offers an adequate trade-off between flight time and monitoring accuracy. Experimental results show that PdUC-D drastically reduces the convergence time compared to the original PdUC proposal without loss of accuracy, and it also increases the performance gap with standard mobility patterns such as Spiral and Billiard. es_ES
dc.description.sponsorship This work was partially supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R", the framework of the DIVINA Challenge Team, which is funded under the Labex MS2T program. Labex MS2T is supported by the French Government, through the program "Investments for the future" managed by the National Agency for Research (Reference: ANR-11-IDEX-0004-02), the "Programa de becas SENESCYT de la Republica del Ecuador", and the Research Direction of the University of Cuenca. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mobile Networks and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject UAV control system es_ES
dc.subject Air pollution monitoring es_ES
dc.subject Discretized systems es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s11036-018-1065-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0004/FR/Sorbonne Universités à Paris pour l'Enseignement et la Recherche/SUPER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Alvear-Alvear, Ó.; Tavares De Araujo Cesariny Calafate, CM.; Zema, N.; Natalizio, E.; Hernández-Orallo, E.; Cano, J.; Manzoni, P. (2018). A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing. Mobile Networks and Applications. 23(6):1693-1702. https://doi.org/10.1007/s11036-018-1065-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 3rd EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS 2017) es_ES
dc.relation.conferencedate Noviembre 29-30,2017 es_ES
dc.relation.conferenceplace Pisa, Italy es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11036-018-1065-4 es_ES
dc.description.upvformatpinicio 1693 es_ES
dc.description.upvformatpfin 1702 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\363058 es_ES
dc.contributor.funder Universidad de Cuenca, Ecuador es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Adam-poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian Maximum entropy–LUR approaches. Environ Health Perspect 970(2013):1–19. https://doi.org/10.1289/ehp.1306566 es_ES
dc.description.references Agency U.S.E.P. (2015) Air Quality Index Available: http://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi es_ES
dc.description.references Alvear O, Calafate CT, Hernández-Orallo E, Cano JC, Manzoni P (2015) Mobile Pollution Data Sensing Using UAVs The 13th International Conference on Advances in Mobile Computing and Multimedia es_ES
dc.description.references Alvear O, Zamora W, Calafate C, Cano JC, Manzoni P (2016) An architecture offering mobile pollution sensing with high spatial resolution. J Sens:2016 es_ES
dc.description.references Alvear O, Zema NR, Natalizio E, Calafate CT (2017) Using uav-based systems to monitor air pollution in areas with poor accessibility. J Adv Transp:2017 es_ES
dc.description.references Alvear OA, Zema NR, Natalizio E, Calafate CT (2017) A chemotactic pollution-homing uav guidance system. In: 2017 13th international Wireless communications and mobile computing conference (IWCMC). IEEE, pp 2115–2120 es_ES
dc.description.references André M (2004) The artemis european driving cycles for measuring car pollutant emissions. Sci Total Environ 334:73–84 es_ES
dc.description.references Basu P, Redi J, Shurbanov V (2004) Coordinated flocking of uavs for improved connectivity of mobile ground nodes. In: 2004 IEEE Military communications conference, MILCOM, vol 3. IEEE, pp 1628–1634 es_ES
dc.description.references Biomo JDMM, Kunz T, St-Hilaire M (2014) An enhanced gauss-markov mobility model for simulations of unmanned aerial ad hoc networks. In: 2014 7th IFIP Wireless and mobile networking conference (WMNC). IEEE, pp 1–8 es_ES
dc.description.references Bouachir O, Abrassart A, Garcia F, Larrieu N (2014) A mobility model for uav ad hoc network. In: 2014 international conference on Unmanned aircraft systems (ICUAS). IEEE, pp 383–388 es_ES
dc.description.references Cox TH, Nagy CJ, Skoog MA, Somers IA, Warner R Civil uav capability assessment es_ES
dc.description.references Eisenman SB, Miluzzo E, Lane ND, Peterson RA, Ahn GS, Campbell AT (2009) Bikenet: a mobile sensing system for cyclist experience mapping. ACM Transactions on Sensor Networks (TOSN) 6(1):6 es_ES
dc.description.references Erman AT, van Hoesel L, Havinga P, Wu J (2008) Enabling mobility in heterogeneous wireless sensor networks cooperating with uavs for mission-critical management. IEEE Wirel Commun 15(6):38–46 es_ES
dc.description.references Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning es_ES
dc.description.references Hugenholtz CH, Moorman BJ, Riddell K, Whitehead K (2012) Small unmanned aircraft systems for remote sensing and earth science research. Eos, Trans Amer Geophysical Union 93(25):236–236 es_ES
dc.description.references Illingworth S, Allen G, Percival C, Hollingsworth P, Gallagher M, Ricketts H, Hayes H, adosz H, Crawley PD, Roberts G (2014) Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmos Sci Lett 15(4):252–258 es_ES
dc.description.references Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766 es_ES
dc.description.references Khan A, Schaefer D, Tao L, Miller DJ, Sun K, Zondlo MA, Harrison WA, Roscoe B, Lary DJ (2012) Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sens 4(5):1355–1368 es_ES
dc.description.references Kuiper E, Nadjm-Tehrani S (2006) Mobility models for uav group reconnaissance applications. In: 2006 International conference on wireless and mobile communications (ICWMC’06). IEEE, pp 33–33 es_ES
dc.description.references McFrederick Q, Kathilankal J, Fuentes J (2008) Air pollution modifies floral scent trails. Atmos Environ 42(10):2336–2348 es_ES
dc.description.references MQ131 Ozone Sensor (2017) Datasheet: http://www.sensorsportal.com/downloads/mq131.pdf es_ES
dc.description.references Orfanus D, de Freitas EP (2014) Comparison of uav-based reconnaissance systems performance using realistic mobility models. In: 2014 6Th international congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE, pp 248–253 es_ES
dc.description.references Pajares G (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogram Eng Remote Sens 81(4):281–329 es_ES
dc.description.references Pujadas M, Plaza J, Teres Jx, Artıñano B, Millan M (2000) Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the madrid urban plume, a case of study. Atmos Environ 34(19):3041–3056 es_ES
dc.description.references R Core Team: R (2016) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ es_ES
dc.description.references Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. The lancet 345(8943):176–178 es_ES
dc.description.references Stein ML (1999) Statistical interpolation of spatial data: some theory for kriging. Springer, New York es_ES
dc.description.references Teh SK, Mejias L, Corke P, Hu W (2008) Experiments in integrating autonomous uninhabited aerial vehicles(uavs) and wireless sensor networks. In: 2008 Australasian Conference on Robotics and Automation (ACRA 08). The Australian Robotics and Automation Association Inc., Canberra. https://eprints.qut.edu.au/15536/ es_ES
dc.description.references Wan Y, Namuduri K, Zhou Y, Fu S (2013) A smooth-turn mobility model for airborne networks. IEEE Trans Veh Technol 62(7):3359–3370 es_ES
dc.description.references Wang W, Guan X, Wang B, Wang Y (2010) A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf Sci 180(3):399–413 es_ES
dc.description.references Zhou B, Xu K, Gerla M (2004) Group and swarm mobility models for ad hoc network scenarios using virtual tracks. In: 2004 IEEE Military communications conference, MILCOM 2004, vol 1. IEEE, pp 289–294 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem