- -

Fixed point root-finding methods of fourth-order of convergence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point root-finding methods of fourth-order of convergence

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Guasp, Lucia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2020-05-22T03:03:08Z
dc.date.available 2020-05-22T03:03:08Z
dc.date.issued 2019-06-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144106
dc.description.abstract [EN] In this manuscript, by using the weight-function technique, a new class of iterative methods for solving nonlinear problems is constructed, which includes many known schemes that can be obtained by choosing different weight functions. This weight function, depending on two different evaluations of the derivative, is the unique difference between the two steps of each method, which is unusual. As it is proven that all the members of the class are optimal methods in the sense of Kung-Traub¿s conjecture, the dynamical analysis is a good tool to determine the best elements of the family in terms of stability. Therefore, the dynamical behavior of this class on quadratic polynomials is studied in this work. We analyze the stability of the presented family from the multipliers of the fixed points and critical points, along with their associated parameter planes. In addition, this study enables us to select the members of the class with good stability properties. es_ES
dc.description.sponsorship This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Symmetry (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear equation es_ES
dc.subject Iterative method es_ES
dc.subject Dynamical behavior es_ES
dc.subject Fatou and Julia sets es_ES
dc.subject Basin of attraction es_ES
dc.subject Periodic orbits es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fixed point root-finding methods of fourth-order of convergence es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/sym11060769 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Guasp, L.; Torregrosa Sánchez, JR. (2019). Fixed point root-finding methods of fourth-order of convergence. Symmetry (Basel). 11(6):1-15. https://doi.org/10.3390/sym11060769 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/sym11060769 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2073-8994 es_ES
dc.relation.pasarela S\393523 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Van Sosin, B., & Elber, G. (2017). Solving piecewise polynomial constraint systems with decomposition and a subdivision-based solver. Computer-Aided Design, 90, 37-47. doi:10.1016/j.cad.2017.05.023 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 es_ES
dc.description.references Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1 es_ES
dc.description.references Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010 es_ES
dc.description.references Ghorbanzadeh, M., & Soleymani, F. (2015). A Quartically Convergent Jarratt-Type Method for Nonlinear System of Equations. Algorithms, 8(3), 415-423. doi:10.3390/a8030415 es_ES
dc.description.references Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 es_ES
dc.description.references Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536 es_ES
dc.description.references Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem