Åström, K. J., & Hägglund, T. (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 20(5), 645-651. doi:10.1016/0005-1098(84)90014-1
Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133-134. doi:10.1109/tac.1966.1098266
Cai, W.-J., Ni, W., He, M.-J., & Ni, C.-Y. (2008). Normalized Decoupling A New Approach for MIMO Process Control System Design. Industrial & Engineering Chemistry Research, 47(19), 7347-7356. doi:10.1021/ie8006165
[+]
Åström, K. J., & Hägglund, T. (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 20(5), 645-651. doi:10.1016/0005-1098(84)90014-1
Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133-134. doi:10.1109/tac.1966.1098266
Cai, W.-J., Ni, W., He, M.-J., & Ni, C.-Y. (2008). Normalized Decoupling A New Approach for MIMO Process Control System Design. Industrial & Engineering Chemistry Research, 47(19), 7347-7356. doi:10.1021/ie8006165
Gagnon, E., Pomerleau, A., & Desbiens, A. (1998). Simplified, ideal or inverted decoupling? ISA Transactions, 37(4), 265-276. doi:10.1016/s0019-0578(98)00023-8
Garrido, J. 2012. Diseño de sistemas de control multivariable por desacoplo con controladores PID. Doctoral dissertation, UNED.
Garrido, J., Vázquez, F., Morilla, F. 2010. Centralized Inverted Decoupling for TITO Processes. Proceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation. Bilbao, Spain.
Garrido, J., Vázquez, F., & Morilla, F. (2011). An extended approach of inverted decoupling. Journal of Process Control, 21(1), 55-68. doi:10.1016/j.jprocont.2010.10.004
Garrido, J., Vázquez, F., & Morilla, F. (2012). Centralized multivariable control by simplified decoupling. Journal of Process Control, 22(6), 1044-1062. doi:10.1016/j.jprocont.2012.04.008
Åström, K. J., & Hägglund, T. (2004). Revisiting the Ziegler–Nichols step response method for PID control. Journal of Process Control, 14(6), 635-650. doi:10.1016/j.jprocont.2004.01.002
Ho, W. K., Hang, C. C., & Cao, L. S. (1995). Tuning of PID controllers based on gain and phase margin specifications. Automatica, 31(3), 497-502. doi:10.1016/0005-1098(94)00130-b
Johansson, K. H. (2000). The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology, 8(3), 456-465. doi:10.1109/87.845876
Lee, M., Lee, K., Kim, C., & Lee, J. (2004). Analytical design of multiloop PID controllers for desired closed-loop responses. AIChE Journal, 50(7), 1631-1635. doi:10.1002/aic.10166
Lieslehto, J. 1996. MIMO controller design using SISO controller design methods. Proceeding of the 13th IFAC World Congress. San Francisco, USA.
Liu, T., Zhang, W., & Gao, F. (2007). Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays. Journal of Process Control, 17(2), 173-186. doi:10.1016/j.jprocont.2006.08.010
Morilla, F., Dormido, S. 2000. Methodologies for the tuning of PID controllers in the frequency domain. PID’00 IFAC Workshop on Digital Control: Past, present and future of PID Control. Terrassa, Spain.
Nordfeldt, P., & Hägglund, T. (2006). Decoupler and PID controller design of TITO systems. Journal of Process Control, 16(9), 923-936. doi:10.1016/j.jprocont.2006.06.002
Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25(1), 252-265. doi:10.1021/i200032a041
Salgado, M. E., & Yuz, J. I. (2009). Una medida de interacción multivariable en el dominio del tiempo y de la frecuencia. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(2), 17-25. doi:10.1016/s1697-7912(09)70089-5
Shen, Y., Cai, W.-J., & Li, S. (2010). Normalized decoupling control for high-dimensional MIMO processes for application in room temperature control HVAC systems. Control Engineering Practice, 18(6), 652-664. doi:10.1016/j.conengprac.2010.03.006
Wade, H. L. (1997). Inverted decoupling: a neglected technique. ISA Transactions, 36(1), 3-10. doi:10.1016/s0019-0578(97)00008-6
Waller(Toijala), K. V. T. (1974). Decoupling in distillation. AIChE Journal, 20(3), 592-594. doi:10.1002/aic.690200321
Waller, M., Waller, J. B., & Waller, K. V. (2003). Decoupling Revisited†. Industrial & Engineering Chemistry Research, 42(20), 4575-4577. doi:10.1021/ie020911c
Wang, Q.-G., Huang, B., & Guo, X. (2000). Auto-tuning of TITO decoupling controllers from step tests. ISA Transactions, 39(4), 407-418. doi:10.1016/s0019-0578(00)00028-8
Wang, Q.-G., Zhang, Y., & Chiu, M.-S. (2002). Decoupling internal model control for multivariable systems with multiple time delays. Chemical Engineering Science, 57(1), 115-124. doi:10.1016/s0009-2509(01)00365-7
Wang, Q.-G., Zhang, Y., & Chiu, M.-S. (2003). Non-interacting control design for multivariable industrial processes. Journal of Process Control, 13(3), 253-265. doi:10.1016/s0959-1524(02)00028-8
Xiong, Q., Cai, W.-J., & He, M.-J. (2007). Equivalent transfer function method for PI/PID controller design of MIMO processes. Journal of Process Control, 17(8), 665-673. doi:10.1016/j.jprocont.2007.01.004
Zhang, W., Lin, C., & Ou, L. (2006). Algebraic Solution toH2Control Problems. II. The Multivariable Decoupling Case. Industrial & Engineering Chemistry Research, 45(21), 7163-7176. doi:10.1021/ie0602310
[-]